Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México.
Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado postal 70-243, Mexico City 04510, México.
Nucleic Acids Res. 2019 Apr 8;47(6):3028-3044. doi: 10.1093/nar/gkz039.
Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.
双链断裂 (DSB) 在植物细胞器中通过具有微同源重复的基因组重排进行修复。这些微同源特征预测存在一种未知的酶促机制,能够通过植物细胞器中的微同源介导的末端连接 (MMEJ) 修复 DSB。在这里,我们表明拟南芥 (Arabidopsis thaliana) 的细胞器 DNA 聚合酶(AtPolIA 和 AtPolIB)使用短至六个核苷酸的微同源序列进行 MMEJ。AtPolIs 通过位于其拇指结构域中的两个特殊氨基酸插入来执行 MMEJ。植物特有的单链结合蛋白 (SSB),AtWhirly2 和细胞器单链结合蛋白 (AtOSB),阻碍 MMEJ,而典型的线粒体 SSB(AtmtSSB1 和 AtmtSSB2)不会干扰 MMEJ。我们的数据预测,MMEJ 引起的细胞器 DNA 重排是 DSB 3'-OH 竞争的结果。如果 AtWhirly 或 AtOSB 能够进入 DSB 的单链 DNA (ssDNA) 区域,则反应将转向同源重组等高保真途径。相反,如果 AtPolIs 或 AtmtSSB 与 DSB 相互作用,则会有利于 MMEJ。AtPolIs 与后生动物线粒体 DNA 聚合酶在系统发育上没有关系,AtPolIs 执行 MMEJ 的能力可能解释了与动物线粒体相比,植物细胞器中 DNA 重排的丰富性。