果蝇DNA聚合酶θ在微同源性介导的末端连接和链间交联修复过程中同时利用解旋酶样结构域和聚合酶结构域。

Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair.

作者信息

Beagan Kelly, Armstrong Robin L, Witsell Alice, Roy Upasana, Renedo Nikolai, Baker Amy E, Schärer Orlando D, McVey Mitch

机构信息

Department of Biology, Tufts University, Medford, Massachusetts.

Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America.

出版信息

PLoS Genet. 2017 May 25;13(5):e1006813. doi: 10.1371/journal.pgen.1006813. eCollection 2017 May.

Abstract

Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase θ (Pol θ), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol θ contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol θ. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol θ can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol θ and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance.

摘要

双链断裂(DSBs)和链间交联(ICLs)是具有毒性的DNA损伤,可通过多种途径进行修复,其中一些途径涉及共享蛋白。这些蛋白之一,DNA聚合酶θ(Pol θ),协调一种名为微同源性介导的末端连接(MMEJ)的诱变DSB修复途径,并且在几种生物体中也是ICLs旁路或修复的关键组分。Pol θ包含由无结构的中央区域连接的聚合酶和类解旋酶结构域。虽然聚合酶结构域在促进MMEJ中的作用已在体外和体内进行了广泛研究,但具有DNA依赖性ATP酶活性的类解旋酶结构域的功能仍不清楚。在这里,我们利用遗传和生化分析来研究果蝇Pol θ的类解旋酶和聚合酶结构域的作用。我们证明了在体内ICL修复过程中对聚合酶和ATP酶活性的绝对需求。然而,与哺乳动物系统类似,电离辐射诱导的DSB修复需要聚合酶活性而非ATP酶活性。使用位点特异性断裂修复试验,我们表明在ATP酶失活突变体中总体末端连接效率不受影响,但模板化插入事件显著减少。在体外,Pol θ可以有效地绕过模型未钩连的氮芥交联,并在微同源性退火后促进DNA合成,尽管这些功能不需要ATP酶活性。总之,我们的数据说明了Pol θ类解旋酶结构域的功能重要性,并表明其与聚合酶结构域的连接对于其在DNA修复和损伤耐受中的多种功能很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a01/5466332/83a720f012bb/pgen.1006813.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索