Yu Jeong Eun, Jeon Sung Jae, Choi Jun Young, Han Yong Woon, Ko Eui Jin, Moon Doo Kyung
Nano and Information Materials (NIMs) Laboratory, Department of Materials Chemistry and Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea.
Small. 2019 Mar;15(9):e1805321. doi: 10.1002/smll.201805321. Epub 2019 Jan 30.
Nonfullerene organic solar cells (NFOSCs) are attracting increasing academic and industrial interest due to their potential uses for flexible and lightweight products using low-cost roll-to-roll technology. In this work, two wide bandgap (WBG) polymers, namely P(fTh-BDT)-C6 and P(fTh-2DBDT)-C6, are designed and synthesized using benzodithiophene (BDT) derivatives. Good oxidation stability and high solubility are achieved by simultaneously introducing fluorine and alkyl chains to a single thiophene (Th) unit. Solid P(fTh-2DBDT)-C6 films present WBG optical absorption, suitable frontier orbital levels, and strong π-π stacking effects. In addition, P(fTh-2DBDT)-C6 exhibits good solubility in both halogenated and nonhalogenated solvents, suggesting its suitability as donor polymer for NFOSCs. The P(fTh-2DBDT)-C6:3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC-Th) based device processed using chlorobenzene/1,8-diiodooctane (CB/DIO) exhibits a remarkably high power conversion efficiency (PCE) of 11.1%. Moreover, P(fTh-2DBDT)-C6:ITIC-Th reaches a high PCE of 10.9% when processed using eco-friendly solvents, such as o-xylene/diphenyl ether (DPE). The cell processed using CB/DIO maintains 100% efficiency after 1272 h, while that processed using o-xylene/DPE presents a 101% increase in efficiency after 768 h and excellent long-term stability. The results of this study demonstrate that simultaneous fluorination and alkylation are effective methods for designing donor polymers appropriate for high-performance NFOSCs.
非富勒烯有机太阳能电池(NFOSCs)因其在采用低成本卷对卷技术的柔性轻质产品中的潜在应用而吸引了越来越多的学术和工业关注。在这项工作中,使用苯并二噻吩(BDT)衍生物设计并合成了两种宽带隙(WBG)聚合物,即P(fTh-BDT)-C6和P(fTh-2DBDT)-C6。通过同时将氟和烷基链引入单个噻吩(Th)单元,实现了良好的氧化稳定性和高溶解性。固态P(fTh-2DBDT)-C6薄膜呈现出WBG光吸收、合适的前沿轨道能级和强π-π堆积效应。此外,P(fTh-2DBDT)-C6在卤代和非卤代溶剂中均表现出良好的溶解性,表明其适合作为NFOSCs的供体聚合物。基于P(fTh-2DBDT)-C6:3,9-双(2-亚甲基-(3-(1,1-二氰基亚甲基)-茚酮))-5,5,11,11-四(5-己基噻吩基)-二噻吩并[2,3-d:2',3'-d']-s-茚并[1,2-b:5,6-b']二噻吩(ITIC-Th)的器件使用氯苯/1,8-二碘辛烷(CB/DIO)处理后,展现出高达11.1%的显著功率转换效率(PCE)。此外,当使用环保溶剂如邻二甲苯/二苯醚(DPE)处理时,P(fTh-2DBDT)-C6:ITIC-Th达到了10.9%的高PCE。使用CB/DIO处理的电池在1272小时后保持100%的效率,而使用邻二甲苯/DPE处理的电池在768小时后效率提高了