文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

野生菌株麦芽糖和麦芽三糖转运蛋白中多态性残基的计算分析

Computational analysis of polymorphic residues in maltose and maltotriose transporters of a wild strain.

作者信息

Faz-Cortez Oscar A, Sánchez-López Alma Y, Hernández-Vásquez César I, Segura-Ruiz Andre, Pereyra-Alférez Benito, García-García Jorge H

机构信息

Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico.

出版信息

Open Life Sci. 2025 Apr 16;20(1):20251080. doi: 10.1515/biol-2025-1080. eCollection 2025.


DOI:10.1515/biol-2025-1080
PMID:40291777
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12032978/
Abstract

The metabolism of maltose and maltotriose, the primary sugars in brewing wort, depends on an efficient transport system. However, most strains transport maltotriose inefficiently, leaving residual α-glucosides in the final product. Proteins involved in maltotriose transport exhibit diverse polymorphic sequences linked to sugar transport efficiency. In this study, a wild strain was placed under adaptive selection, resulting in a strain with a 65 and 44% increase in maltose and maltotriose transport rates, respectively. Genes encoding maltose and maltotriose transporters, including x1, x, and 1, were detected in both the native and adapted strains. One variant of Mal31p, carrying a polymorphism at position 371 in transmembrane helix 7, was identified. This helix has been reported to have a high likelihood of undergoing polymorphisms. Bioinformatics analysis revealed structural changes affecting substrate interactions and channel dynamics, with the polymorphism conferring greater protein flexibility and reducing electrostatic interactions. These results suggest that the residue at position 371 in maltose and maltotriose transporters is a key element distinct from those previously reported. Additionally, we propose a significant set of polymorphic residues within these transporters potentially resulting from the evolution of these proteins.

摘要

酿造麦芽汁中的主要糖类——麦芽糖和麦芽三糖的代谢依赖于高效的转运系统。然而,大多数菌株对麦芽三糖的转运效率低下,导致最终产品中残留α-葡萄糖苷。参与麦芽三糖转运的蛋白质表现出与糖转运效率相关的多样多态性序列。在本研究中,一株野生菌株经过适应性选择,得到了一株麦芽糖和麦芽三糖转运速率分别提高65%和44%的菌株。在原始菌株和适应菌株中均检测到编码麦芽糖和麦芽三糖转运蛋白的基因,包括x1、x和1。鉴定出一种Mal31p变体,其在跨膜螺旋7的第371位存在多态性。据报道,该螺旋具有较高的多态性可能性。生物信息学分析揭示了影响底物相互作用和通道动力学的结构变化,这种多态性赋予了蛋白质更大的灵活性并减少了静电相互作用。这些结果表明,麦芽糖和麦芽三糖转运蛋白中第371位的残基是一个与先前报道不同的关键元件。此外,我们提出了这些转运蛋白中一组可能由这些蛋白质进化产生的重要多态性残基。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/692d09694e4a/j_biol-2025-1080-fig007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/39a7c379eba1/j_biol-2025-1080-ga001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/4e9c18befdc7/j_biol-2025-1080-fig001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/a84d505b6ed2/j_biol-2025-1080-fig002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/9a2d35b57c0a/j_biol-2025-1080-fig003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/299d2b178208/j_biol-2025-1080-fig004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/0831d6eed698/j_biol-2025-1080-fig005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/7cb50d0187a8/j_biol-2025-1080-fig006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/692d09694e4a/j_biol-2025-1080-fig007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/39a7c379eba1/j_biol-2025-1080-ga001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/4e9c18befdc7/j_biol-2025-1080-fig001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/a84d505b6ed2/j_biol-2025-1080-fig002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/9a2d35b57c0a/j_biol-2025-1080-fig003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/299d2b178208/j_biol-2025-1080-fig004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/0831d6eed698/j_biol-2025-1080-fig005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/7cb50d0187a8/j_biol-2025-1080-fig006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972a/12032978/692d09694e4a/j_biol-2025-1080-fig007.jpg

相似文献

[1]
Computational analysis of polymorphic residues in maltose and maltotriose transporters of a wild strain.

Open Life Sci. 2025-4-16

[2]
Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus.

FEMS Yeast Res. 2016-8

[3]
The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.

J Appl Microbiol. 2008-4

[4]
In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation.

PLoS Genet. 2019-4-4

[5]
Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae.

Appl Environ Microbiol. 2002-11

[6]
Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.

Appl Environ Microbiol. 2009-4

[7]
Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family.

Appl Environ Microbiol. 2005-9

[8]
Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease.

Appl Environ Microbiol. 2008-3

[9]
Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.

Appl Environ Microbiol. 2005-12

[10]
Expression patterns of genes and association with differential maltose and maltotriose transport rate of two yeasts.

Appl Environ Microbiol. 2024-7-24

引用本文的文献

[1]
Maltose and Maltotriose Transporters in Brewer's Yeasts: Polymorphic and Key Residues in Their Activity.

Int J Mol Sci. 2025-6-20

本文引用的文献

[1]
Key Amino Acid Residues of the Agt1 Transporter for Trehalose Transport by .

J Fungi (Basel). 2024-11-11

[2]
Specialization Restricts the Evolutionary Paths Available to Yeast Sugar Transporters.

Mol Biol Evol. 2024-11-1

[3]
Exploring the hepatoprotective properties of citronellol: and studies on ethanol-induced damage in HepG2 cells.

Open Life Sci. 2024-9-9

[4]
Expression patterns of genes and association with differential maltose and maltotriose transport rate of two yeasts.

Appl Environ Microbiol. 2024-7-24

[5]
The Arabidopsis AtSWEET13 transporter discriminates sugars by selective facial and positional substrate recognition.

Commun Biol. 2024-6-24

[6]
Identification and characterization of microorganisms isolated from noncompliant or atypical dairy products in Canada.

J Dairy Sci. 2024-10

[7]
Highly complete long-read genomes reveal pangenomic variation underlying yeast phenotypic diversity.

Genome Res. 2023-5

[8]
Evolution and functional diversification of yeast sugar transporters.

Essays Biochem. 2023-9-13

[9]
Exploiting Non-Conventional Yeasts for Low-Alcohol Beer Production.

Microorganisms. 2023-1-26

[10]
Functional diversity and plasticity in the sugar preferences of Saccharomyces MALT transporters in domesticated yeasts.

FEMS Yeast Res. 2022-12-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索