Suppr超能文献

通过顺序激发压电力显微镜解析胶原原纤维的精细机电结构。

Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy.

机构信息

School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China. Shenzhen Key Laboratory of Nanobiomechanics, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China.

出版信息

Nanotechnology. 2019 May 17;30(20):205703. doi: 10.1088/1361-6528/ab0340. Epub 2019 Jan 30.

Abstract

Collagen is the main protein in extracellular matrix that is found in many connective tissues, and it exhibits piezoelectricity that is expected to correlate with its hierarchical microstructure. Resolving fine electromechanical structure of collagen, however, is challenging, due to its weak piezoresponse, rough topography, and microstructural hierarchy. Here we adopt the newly developed sequential excitation strategy in combination with piezoresponse force microscopy to overcome these difficulties. It excites the local electromechanical response of collagen via a sequence of distinct frequencies, minimizing crosstalk with topography, followed by principal component analysis to remove the background noise and simple harmonic oscillator model for physical analysis and data reconstruction. These enable us to acquire high fidelity mappings of fine electromechanical response at the nanoscale that correlate with the gap and overlap domains of collagen fibrils, which show substantial improvement over conventional piezoresponse force microscopy techniques. It also embodies the spirit of big data atomic force microscopy that can be readily extended into other applications with targeted data acquisition.

摘要

胶原蛋白是细胞外基质中的主要蛋白质,存在于许多结缔组织中,具有压电性,其压电性能预计与其层次微观结构有关。然而,由于胶原蛋白的压电阻抗响应较弱、形貌粗糙以及微观结构的层次复杂,解析其精细的机电结构具有挑战性。在这里,我们采用新开发的顺序激励策略结合压电力显微镜来克服这些困难。该策略通过一系列不同的频率来激发胶原蛋白的局部机电响应,从而最大程度地减少与形貌的串扰,然后进行主成分分析以去除背景噪声,再采用简谐振荡器模型进行物理分析和数据重建。这些使得我们能够在纳米尺度上获取精细机电响应的高保真映射,这些映射与胶原蛋白原纤维的间隙和重叠域相关联,这比传统的压电力显微镜技术有了实质性的改进。它还体现了大数据原子力显微镜的精神,可以很容易地扩展到其他具有针对性数据采集的应用中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验