Huang Boyuan, Esfahani Ehsan Nasr, Li Jiangyu
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600, USA.
Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Natl Sci Rev. 2019 Jan;6(1):55-63. doi: 10.1093/nsr/nwy096. Epub 2018 Sep 8.
Ever-increasing hardware capabilities and computation powers have enabled acquisition and analysis of big scientific data at the nanoscale routine, though much of the data acquired often turn out to be redundant, noisy and/or irrelevant to the problems of interest, and it remains nontrivial to draw clear mechanistic insights from pure data analytics. In this work, we use scanning probe microscopy (SPM) as an example to demonstrate deep data methodology for nanosciences, transitioning from brute-force analytics such as data mining, correlation analysis and unsupervised classification to informed and/or targeted causative data analytics built on sound physical understanding. Three key ingredients of such deep data analytics are presented. A sequential excitation scanning probe microscopy (SE-SPM) technique is first developed to acquire high-quality, efficient and physically relevant data, which can be easily implemented on any standard atomic force microscope (AFM). Brute-force physical analysis is then carried out using a simple harmonic oscillator (SHO) model, enabling us to derive intrinsic electromechanical coupling of interest. Finally, principal component analysis (PCA) is carried out, which not only speeds up the analysis by four orders of magnitude, but also allows a clear physical interpretation of its modes in combination with SHO analysis. A rough piezoelectric material has been probed using such a strategy, enabling us to map its intrinsic electromechanical properties at the nanoscale with high fidelity, where conventional methods fail. The SE in combination with deep data methodology can be easily adapted for other SPM techniques to probe a wide range of functional phenomena at the nanoscale.
不断增强的硬件能力和计算能力使得在纳米尺度上常规获取和分析大科学数据成为可能,尽管所获取的许多数据往往是冗余的、有噪声的和/或与感兴趣的问题无关的,而且从纯粹的数据分析中得出清晰的机理见解仍然并非易事。在这项工作中,我们以扫描探针显微镜(SPM)为例,展示用于纳米科学的深度数据方法,从诸如数据挖掘、相关性分析和无监督分类等蛮力分析过渡到基于可靠物理理解的有信息和/或有针对性的因果数据分析。介绍了这种深度数据分析的三个关键要素。首先开发了一种顺序激发扫描探针显微镜(SE-SPM)技术,以获取高质量、高效且与物理相关的数据,该技术可以在任何标准原子力显微镜(AFM)上轻松实现。然后使用一个简单的谐振子(SHO)模型进行蛮力物理分析,使我们能够推导出感兴趣的固有机电耦合。最后进行主成分分析(PCA),这不仅将分析速度提高了四个数量级,而且还能结合SHO分析对其模式进行清晰的物理解释。已使用这种策略探测了一种粗糙的压电材料,使我们能够在纳米尺度上以高保真度绘制其固有机电特性,而传统方法在此处失效。SE与深度数据方法相结合可以很容易地应用于其他SPM技术,以探测纳米尺度上的各种功能现象。