Suppr超能文献

利用可见-近红外(Vis-NIR)光谱法检测花生仁中的黄曲霉毒素 B。

Use of Visible-Near-Infrared (Vis-NIR) Spectroscopy to Detect Aflatoxin B on Peanut Kernels.

机构信息

1 Geosystems Research Institute, Mississippi State University, Stennis Space Center, MS, USA.

2 USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA.

出版信息

Appl Spectrosc. 2019 Apr;73(4):415-423. doi: 10.1177/0003702819829725. Epub 2019 Feb 20.

Abstract

Current methods for detecting aflatoxin contamination of agricultural and food commodities are generally based on wet chemical analyses, which are time-consuming, destructive to test samples, and require skilled personnel to perform, making them impossible for large-scale nondestructive screening and on-site detection. In this study, we utilized visible-near-infrared (Vis-NIR) spectroscopy over the spectral range of 400-2500 nm to detect contamination of commercial, shelled peanut kernels (runner type) with the predominant aflatoxin B (AFB). The artificially contaminated samples were prepared by dropping known amounts of aflatoxin standard dissolved in 50:50 (v/v) methanol/water onto peanut kernel surface to achieve different contamination levels. The partial least squares discriminant analysis (PLS-DA) models established using the full spectra over different ranges achieved good prediction results. The best overall accuracy of 88.57% and 92.86% were obtained using the full spectra when taking 20 and 100 parts per billion (ppb), respectively, as the classification threshold. The random frog (RF) algorithm was used to find the optimal characteristic wavelengths for identifying the surface AFB-contamination of peanut kernels. Using the optimal spectral variables determined by the RF algorithm, the simplified RF-PLS-DA classification models were established. The better RF-PLS-DA models attained the overall accuracies of 90.00% and 94.29% with the 20 ppb and 100 ppb thresholds, respectively, which were improved compared to using the full spectral variables. Compared to using the full spectral variables, the employed spectral variables of the simplified RF-PLS-DA models were decreased by at least 94.82%. The present study demonstrated that the Vis-NIR spectroscopic technique combined with appropriate chemometric methods could be useful in identifying AFB contamination of peanut kernels.

摘要

目前用于检测农业和食品商品中黄曲霉毒素污染的方法通常基于湿化学分析,这些方法耗时、对测试样品具有破坏性,并且需要熟练的人员进行操作,因此无法进行大规模的无损筛选和现场检测。在本研究中,我们利用可见-近红外(Vis-NIR)光谱技术,在 400-2500nm 的光谱范围内,检测商业、去壳花生仁(跑步者型)中主要的黄曲霉毒素 B(AFB)污染。通过将已知量的溶解在 50:50(v/v)甲醇/水中的黄曲霉毒素标准滴到花生仁表面,制备出人工污染的样品,以达到不同的污染水平。使用全光谱在不同范围内建立的偏最小二乘判别分析(PLS-DA)模型取得了良好的预测结果。当以 20ppb 和 100ppb 分别作为分类阈值时,使用全光谱分别获得了 88.57%和 92.86%的最佳整体准确性。随机蛙(RF)算法用于寻找识别花生仁表面 AFB 污染的最佳特征波长。使用 RF 算法确定的最佳光谱变量,建立了简化的 RF-PLS-DA 分类模型。使用简化的 RF-PLS-DA 模型,更好的 RF-PLS-DA 模型在 20ppb 和 100ppb 阈值下分别获得了 90.00%和 94.29%的整体准确性,与使用全光谱变量相比有所提高。与使用全光谱变量相比,简化的 RF-PLS-DA 模型所采用的光谱变量至少减少了 94.82%。本研究表明,Vis-NIR 光谱技术结合适当的化学计量学方法可用于识别花生仁中的 AFB 污染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验