Suppr超能文献

利用可见-近红外(400-1000纳米)高光谱成像技术对玉米粒中黄曲霉毒素B1浓度进行无损分类和预测。

Non-destructive classification and prediction of aflatoxin-B1 concentration in maize kernels using Vis-NIR (400-1000 nm) hyperspectral imaging.

作者信息

Chakraborty Subir Kumar, Mahanti Naveen Kumar, Mansuri Shekh Mukhtar, Tripathi Manoj Kumar, Kotwaliwale Nachiket, Jayas Digvir Singh

机构信息

Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal, MP 462038 India.

Department of Bio Systems Engineering, University of Manitoba, Winnipeg, Canada.

出版信息

J Food Sci Technol. 2021 Feb;58(2):437-450. doi: 10.1007/s13197-020-04552-w. Epub 2020 Jun 6.

Abstract

Aflatoxin-B1 contamination in maize is a major food safety issue across the world. Conventional detection technique of toxins requires highly skilled technicians and is time-consuming. Application of appropriate chemometrics along with hyperspectral imaging (HSI) can identify aflatoxin-B1 infected maize kernels. Present study was undertaken to classify 240 maize kernels inoculated with six different concentrations (25, 40, 70, 200, 300 and 500 ppb) of aflatoxin-B1 by using Vis-NIR HSI. The reflectance spectral data were pre-processed (multiplicative scatter correction (MSC), standard normal variate (SNV), Savitsky-Golay smoothing and their combinations) and classified using partial least square discriminant analysis (PLS-DA) and k-nearest neighbour (k-NN). PLS model was also developed to predict the concentration of aflatoxin-B1in naturally contaminated maize kernels inoculated with . The potential wavelength (508 nm) was selected based on principal component analysis (PCA) loadings to distinguish between sterile and infected maize kernels. PCA score plots revealed a distinct separation of low contaminated samples (25, 40 and 70 ppb) from highly contaminated samples (200, 300 and 500 ppb) without any overlapping of data. The maximum classification accuracy of 94.7% was obtained using PLS-DA with SNV pre-processed data. Across all the combinations of pre-processing and classification models, the best efficiency (98.2%) was exhibited by k-NN model with raw data. The developed PLS model depicted good prediction accuracy (  = 0.820, SE = 79.425, RPD = 2.382) during Venetian-blinds cross-validation. The results of pixel-wise classification (k-NN) and concentration distribution maps (PLS with raw spectra) were quite close to the result obtained by reference method (HPLC analysis) of aflatoxin-B1 detection.

摘要

玉米中的黄曲霉毒素B1污染是一个全球性的重大食品安全问题。传统的毒素检测技术需要高技能的技术人员,且耗时较长。应用适当的化学计量学方法结合高光谱成像(HSI)可以识别受黄曲霉毒素B1感染的玉米粒。本研究旨在通过可见-近红外高光谱成像对240粒接种了六种不同浓度(25、40、70、200、300和500 ppb)黄曲霉毒素B1的玉米粒进行分类。对反射光谱数据进行预处理(多元散射校正(MSC)、标准正态变量变换(SNV)、Savitsky-Golay平滑及其组合),并使用偏最小二乘判别分析(PLS-DA)和k近邻(k-NN)进行分类。还建立了PLS模型来预测接种了……的天然污染玉米粒中黄曲霉毒素B1的浓度。基于主成分分析(PCA)载荷选择潜在波长(508 nm)以区分无菌玉米粒和受感染玉米粒。PCA得分图显示低污染样品(25、40和70 ppb)与高污染样品(200、300和500 ppb)明显分离,数据无任何重叠。使用经SNV预处理的数据的PLS-DA获得了94.7%的最大分类准确率。在所有预处理和分类模型的组合中,原始数据的k-NN模型表现出最佳效率(98.2%)。所建立的PLS模型在交叉验证期间显示出良好的预测准确性(  = 0.820,SE = 79.425,RPD = 2.382)。逐像素分类(k-NN)和浓度分布图(原始光谱的PLS)的结果与黄曲霉毒素B1检测的参考方法(HPLC分析)获得的结果非常接近。

相似文献

引用本文的文献

本文引用的文献

1
An Outline of Meat Consumption in the Indian Population - A Pilot Review.印度人群肉类消费概述——一项初步综述
Korean J Food Sci Anim Resour. 2014;34(4):507-15. doi: 10.5851/kosfa.2014.34.4.507. Epub 2014 Aug 31.
2
Hyperspectral image analysis. A tutorial.高光谱图像分析。教程。
Anal Chim Acta. 2015 Oct 8;896:34-51. doi: 10.1016/j.aca.2015.09.030. Epub 2015 Sep 25.
5
Online detection and quantification of ergot bodies in cereals using near infrared hyperspectral imaging.利用近红外高光谱成像技术在线检测和定量谷物中的麦角体。
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(2):232-40. doi: 10.1080/19440049.2011.627573. Epub 2011 Nov 7.
7
Early detection of toxigenic fungi on maize by hyperspectral imaging analysis.利用高光谱成像分析技术早期检测玉米中的产毒真菌。
Int J Food Microbiol. 2010 Nov 15;144(1):64-71. doi: 10.1016/j.ijfoodmicro.2010.08.001. Epub 2010 Aug 13.
8
Practical issues of hyperspectral imaging analysis of solid dosage forms.固体剂型高光谱成像分析的实际问题。
Anal Bioanal Chem. 2010 Sep;398(1):93-109. doi: 10.1007/s00216-010-3828-z. Epub 2010 May 23.
9
Variables selection methods in near-infrared spectroscopy.近红外光谱中的变量选择方法。
Anal Chim Acta. 2010 May 14;667(1-2):14-32. doi: 10.1016/j.aca.2010.03.048. Epub 2010 Mar 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验