Suppr超能文献

一种快速、无损的同时检测玉米芯上产毒真菌和黄曲霉毒素污染的方法。

A Rapid and Nondestructive Method for Simultaneous Determination of Aflatoxigenic Fungus and Aflatoxin Contamination on Corn Kernels.

机构信息

Geosystems Research Institute , Mississippi State University , 1021 Balch Boulevard , Stennis Space Center , Mississippi 39529 , United States.

Southern Regional Research Center , USDA-ARS , New Orleans , Louisiana 70124 , United States.

出版信息

J Agric Food Chem. 2019 May 8;67(18):5230-5239. doi: 10.1021/acs.jafc.9b01044. Epub 2019 Apr 23.

Abstract

Conventional methods for detecting aflatoxigenic fungus and aflatoxin contamination are generally time-consuming, sample-destructive, and require skilled personnel to perform, making them impossible for large-scale nondestructive screening detection, real-time, and on-site analysis. Therefore, the potential of visible-near-infrared (Vis-NIR) spectroscopy over the 400-2500 nm spectral range was examined for determination of aflatoxigenic fungus infection and the corresponding aflatoxin contamination on corn kernels in a rapid and nondestructive manner. The two A. flavus strains, AF13 and AF38, were used to represent the aflatoxigenic fungus and nonaflatoxigenic fungus, respectively, for artificial inoculation on corn kernels. The partial least-squares discriminant analysis (PLS-DA) models based on different combinations of spectral range (I: 410-1070 nm; II: 1120-2470 nm), corn side (endosperm or germ side), spectral variable number (full spectra or selected variables), modeling approach (two-step or one-step), and classification threshold (20 or 100 ppb) were developed and their performances were compared. The first study focusing on detection of aflatoxigenic fungus-infected corn kernels showed that, in classifying the "control+AF38-inoculated" and AF13-inoculated corn kernels, the full spectral PLS-DA models using the preprocessed spectra over range II and one-step approach yielded more accurate prediction results than using the spectra over range I and the two-step approach. The advantage of the full spectral PLS-DA models established using one corn side than the other side were not consistent in the explored combination cases. The best full spectral PLS-DA model obtained was obtained using the germ-side spectra over range II with the one-step approach, which achieved an overall accuracy of 91.11%. The established CARS-PLSDA models performed better than the corresponding full-spectral PLS-DA models, with the better model achieved an overall accuracy of 97.78% in separating the AF13-inoculated corn kernels and the uninfected control and AF38-inoculated corn kernels. The second study focusing on the detection of aflatoxin-contaminated corn kernels showed that, based on the aflatoxin threshold of 20 and 100 ppb, the best overall accuracy in classifying the aflatoxin-contaminated and healthy corn kernels attained 86.67% and 84.44%, respectively, using the CARS-PLSDA models. The quantitative modeling results using partial least-squares regression (PLSR) obtained the correlation coefficient of prediction set ( R) of 0.91, which indicated the possibility of using Vis-NIR spectroscopy to quantify aflatoxin concentration in aflatoxigenic fungus-infected corn kernels.

摘要

传统的检测产毒真菌和黄曲霉毒素污染的方法通常耗时、破坏性强,且需要专业人员进行操作,因此无法进行大规模的无损筛选检测、实时和现场分析。因此,本研究旨在探讨可见-近红外(Vis-NIR)光谱在 400-2500nm 光谱范围内快速、无损地检测玉米颗粒中产毒真菌感染和相应的黄曲霉毒素污染的潜力。使用两种黄曲霉菌株,AF13 和 AF38,分别代表产毒真菌和非产毒真菌,对玉米颗粒进行人工接种。基于不同光谱范围(I:410-1070nm;II:1120-2470nm)、玉米侧(胚乳或胚芽侧)、光谱变量数量(全谱或选择变量)、建模方法(两步法或一步法)和分类阈值(20 或 100ppb),建立了偏最小二乘判别分析(PLS-DA)模型,并对其性能进行了比较。第一项研究重点是检测产毒真菌感染的玉米颗粒,结果表明,在对“对照+AF38 接种”和 AF13 接种的玉米颗粒进行分类时,使用预处理的 II 波段范围内的全谱 PLS-DA 模型和一步法得到的预测结果比使用 I 波段范围内的模型和两步法更准确。在探索的组合案例中,使用一侧玉米的全谱 PLS-DA 模型优于另一侧玉米的优势并不一致。使用 II 波段的胚芽侧全谱数据和一步法建立的最佳全谱 PLS-DA 模型的总体准确率为 91.11%。CARS-PLSDA 模型的性能优于相应的全谱 PLS-DA 模型,其中性能最好的模型在分离 AF13 接种的玉米颗粒与未感染对照和 AF38 接种的玉米颗粒时,总体准确率达到 97.78%。第二项研究重点是检测黄曲霉毒素污染的玉米颗粒,结果表明,基于 20 和 100ppb 的黄曲霉毒素阈值,使用 CARS-PLSDA 模型对黄曲霉毒素污染和健康玉米颗粒进行分类的最佳总体准确率分别为 86.67%和 84.44%。使用偏最小二乘回归(PLSR)进行定量建模的结果得到预测集(R)的相关系数为 0.91,这表明使用 Vis-NIR 光谱定量检测产毒真菌感染玉米颗粒中黄曲霉毒素浓度的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验