Suppr超能文献

半参数概率单位模型在信息性现况数据中的应用。

Semiparametric probit model for informative current status data.

机构信息

Center for Applied Statistical Research, School of Mathematics, Jilin University, Changchun, China.

School of Mathematical Sciences, Capital Normal University, Beijing, China.

出版信息

Stat Med. 2019 May 30;38(12):2219-2227. doi: 10.1002/sim.8106. Epub 2019 Jan 30.

Abstract

Semiparametric probit models have recently attracted some attention for regression analysis of failure time data partly due to the popularity of the normal distribution and its special features. In this paper, we discuss the fitting of such models to informative current status data, which often occur in many areas such as medical studies and whose analysis has also recently attracted a lot of attention. For inference, a sieve maximum likelihood approach is developed and the methodology is further generalized to a class of generalized semiparametric probit models. A simulation study is conducted to assess the finite sample properties of the presented approach and indicates that it works well in practical situations. An application that motivated this study is provided.

摘要

半参数概率模型最近由于正态分布及其特殊性质的流行而受到回归分析中失败时间数据的关注。在本文中,我们讨论了将此类模型拟合到信息性当前状态数据,这些数据经常出现在医学研究等许多领域,其分析也最近引起了很多关注。为了进行推理,开发了一种筛最大似然方法,并将该方法进一步推广到一类广义半参数概率模型。进行了模拟研究以评估所提出方法的有限样本性质,并表明它在实际情况下效果良好。提供了一个激发这项研究的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验