Suppr超能文献

一般区间删失下二元数据的基于copula的半参数回归方法

Copula-based semiparametric regression method for bivariate data under general interval censoring.

作者信息

Sun Tao, Ding Ying

机构信息

Department of Biostatistics, University of Pittsburgh, 130 DeSoto St, Pittsburgh, PA 15261, USA.

出版信息

Biostatistics. 2021 Apr 10;22(2):315-330. doi: 10.1093/biostatistics/kxz032.

Abstract

This research is motivated by discovering and underpinning genetic causes for the progression of a bilateral eye disease, age-related macular degeneration (AMD), of which the primary outcomes, progression times to late-AMD, are bivariate and interval-censored due to intermittent assessment times. We propose a novel class of copula-based semiparametric transformation models for bivariate data under general interval censoring, which includes the case 1 interval censoring (current status data) and case 2 interval censoring. Specifically, the joint likelihood is modeled through a two-parameter Archimedean copula, which can flexibly characterize the dependence between the two margins in both tails. The marginal distributions are modeled through semiparametric transformation models using sieves, with the proportional hazards or odds model being a special case. We develop a computationally efficient sieve maximum likelihood estimation procedure for the unknown parameters, together with a generalized score test for the regression parameter(s). For the proposed sieve estimators of finite-dimensional parameters, we establish their asymptotic normality and efficiency. Extensive simulations are conducted to evaluate the performance of the proposed method in finite samples. Finally, we apply our method to a genome-wide analysis of AMD progression using the Age-Related Eye Disease Study data, to successfully identify novel risk variants associated with the disease progression. We also produce predicted joint and conditional progression-free probabilities, for patients with different genetic characteristics.

摘要

本研究旨在发现并确定一种双侧眼病——年龄相关性黄斑变性(AMD)进展的遗传原因。由于评估时间的间歇性,其主要结局(晚期AMD的进展时间)是双变量且区间删失的。我们针对一般区间删失下的双变量数据提出了一类基于copula的新型半参数变换模型,其中包括情形1区间删失(当前状态数据)和情形2区间删失。具体而言,联合似然通过双参数阿基米德copula进行建模,它能够灵活地刻画两个边缘在两端的相依性。边缘分布通过使用筛法的半参数变换模型进行建模,比例风险或比值模型是其特殊情况。我们为未知参数开发了一种计算效率高的筛法极大似然估计程序,以及针对回归参数的广义得分检验。对于所提出的有限维参数的筛法估计量,我们建立了它们的渐近正态性和有效性。进行了广泛的模拟以评估所提方法在有限样本中的性能。最后,我们将我们的方法应用于使用年龄相关性眼病研究数据对AMD进展进行的全基因组分析,成功识别出与疾病进展相关的新型风险变异。我们还为具有不同遗传特征的患者生成了预测的联合和条件无进展概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验