Suppr超能文献

基于 Copula 的相依状态数据半参数线性变换模型分析。

Copula-based analysis of dependent current status data with semiparametric linear transformation model.

机构信息

School of Mathematical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.

School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.

出版信息

Lifetime Data Anal. 2024 Oct;30(4):742-775. doi: 10.1007/s10985-024-09632-z. Epub 2024 Aug 24.

Abstract

This paper discusses regression analysis of current status data with dependent censoring, a problem that often occurs in many areas such as cross-sectional studies, epidemiological investigations and tumorigenicity experiments. Copula model-based methods are commonly employed to tackle this issue. However, these methods often face challenges in terms of model and parameter identification. The primary aim of this paper is to propose a copula-based analysis for dependent current status data, where the association parameter is left unspecified. Our method is based on a general class of semiparametric linear transformation models and parametric copulas. We demonstrate that the proposed semiparametric model is identifiable under certain regularity conditions from the distribution of the observed data. For inference, we develop a sieve maximum likelihood estimation method, using Bernstein polynomials to approximate the nonparametric functions involved. The asymptotic consistency and normality of the proposed estimators are established. Finally, to demonstrate the effectiveness and practical applicability of our method, we conduct an extensive simulation study and apply the proposed method to a real data example.

摘要

本文讨论了带有相依删失的现状数据回归分析,这是在横断面研究、流行病学调查和肿瘤发生实验等多个领域经常出现的问题。基于 Copula 的方法通常用于解决这个问题。然而,这些方法在模型和参数识别方面常常面临挑战。本文的主要目的是提出一种基于 Copula 的相依现状数据分析方法,其中关联参数未指定。我们的方法基于一类广义半参数线性变换模型和参数 Copula。我们证明,在所观察数据的分布下,提出的半参数模型在一定的正则条件下是可识别的。对于推断,我们开发了一种筛最大似然估计方法,使用 Bernstein 多项式来近似涉及的非参数函数。建立了所提出的估计量的渐近一致性和正态性。最后,为了展示我们的方法的有效性和实际适用性,我们进行了广泛的模拟研究,并将所提出的方法应用于一个真实数据示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验