Suppr超能文献

移行区前列腺癌:定量 ADC、形态和纹理特征的逻辑回归和机器学习模型对诊断具有高度准确性。

Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis.

机构信息

Department of Medical Imaging, Ottawa Hospital, University of Ottawa, Ontario, Canada.

Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, Women's College Hospital, University of Toronto, Ontario, Canada.

出版信息

J Magn Reson Imaging. 2019 Sep;50(3):940-950. doi: 10.1002/jmri.26674. Epub 2019 Jan 30.

Abstract

BACKGROUND

The limitation of diagnosis of transition zone (TZ) prostate cancer (PCa) using subjective assessment of multiparametric (mp) MRI with PI-RADS v2 is related to overlapping features between cancers and stromal benign prostatic hyperplasia (BPH) nodules, particularly in small lesions.

PURPOSE

To evaluate modeling of quantitative apparent diffusion coefficient (ADC), texture, and shape features using logistic regression (LR) and support vector machine (SVM) models for the diagnosis of transition zone PCa.

STUDY TYPE

Retrospective.

POPULATION

Ninety patients; 44 consecutive TZ PCa were compared with 61 consecutive BPH nodules (26 glandular/35 stromal).

FIELD STRENGTH/SEQUENCE: 3 T/T -weighted (T W) fast spin-echo, diffusion weighted imaging.

ASSESSMENT

A radiologist manually segmented lesions on axial images for quantitative ADC (mean, 10 , 25 -centile-ADC), T W-shape (circularity, convexity) and T W-texture (kurtosis, skewness, entropy, run-length nonuniformity [RLNU], gray-level nonuniformity [GLNU]) analysis. A second radiologist segmented one-fifth of randomly selected lesions to determine the reproducibility of measurements. The reference standard was histopathology for all lesions.

STATISTICAL TESTS

Quantitative features were selected a priori and were compared using univariate and multivariate analysis. LR and SVM models of statistically significant features were constructed and evaluated using receiver operator characteristic (ROC) analysis. Subgroup analysis of TZ PCa vs. only stromal BPH and in lesions measuring <15 mm was performed. Agreement in measurements was assessed using the Dice similarity coefficient (DSC).

RESULTS

Mean, 25 and 10 -centile ADC, circularity, and texture (entropy, RLNU, GLNU) features differed between groups (P < 0.0001-0.0058); however, at multivariate analysis only circularity and ADC metrics (P < 0.001) remained significant. LR and SVM models were highly accurate for the diagnosis of TZ PCa (sensitivity/specificity/AUC): 93.2%/98.4%/0.989 and 93.2%/96.7%/0.949, respectively, with no significance difference between the LR and SVM models (P = 0.2271). Reproducibility of segmentation was excellent (DSC 0.84 tumors and 0.87 BPH). Subgroup analyses of TZ PCa vs. stromal BPH (AUC = 0.976) and in <15 mm lesions (AUC = 0.990) remained highly accurate.

DATA CONCLUSION

LR and SVM models incorporating previously described quantitative ADC, shape and texture analysis features are highly accurate for the diagnosis of TZ PCa and remained accurate when comparing TZ PCa with stromal BPH and in smaller lesions.

LEVEL OF EVIDENCE

3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:940-950.

摘要

背景

使用 PI-RADS v2 对多参数 MRI 进行主观评估对移行区(TZ)前列腺癌(PCa)的诊断存在局限性,这与癌症与基质良性前列腺增生(BPH)结节之间存在重叠特征有关,尤其是在小病灶中。

目的

评估使用逻辑回归(LR)和支持向量机(SVM)模型对 TZ PCa 进行诊断的定量表观扩散系数(ADC)、纹理和形状特征的建模。

研究类型

回顾性研究。

人群

90 例患者;44 例连续 TZ PCa 与 61 例连续 BPH 结节(26 例腺性/35 例基质性)进行比较。

磁场强度/序列:3T/T2 加权(T2W)快速自旋回波,弥散加权成像。

评估

一位放射科医生在轴位图像上手动对病变进行定量 ADC(平均值、10%、25% ADC)、T2W 形状(圆形度、凸度)和 T2W 纹理(峰度、偏度、熵、游程长度不均匀性[RLNU]、灰度不均匀性[GLNU])分析。第二位放射科医生随机选择五分之一的病变进行分割,以确定测量的可重复性。所有病变的参考标准均为组织病理学。

统计检验

预先选择定量特征,并使用单变量和多变量分析进行比较。构建并使用受试者工作特征(ROC)分析评估具有统计学意义的特征的 LR 和 SVM 模型。对 TZ PCa 与仅基质性 BPH 和测量<15mm 的病变进行了亚组分析。使用 Dice 相似系数(DSC)评估测量值的一致性。

结果

各组间平均 ADC、25% ADC 和 10% ADC、圆形度和纹理(熵、RLNU、GLNU)特征存在差异(P<0.0001-0.0058);然而,在多变量分析中,仅圆形度和 ADC 指标(P<0.001)仍具有显著差异。LR 和 SVM 模型对 TZ PCa 的诊断均具有很高的准确性(灵敏度/特异性/AUC):93.2%/98.4%/0.989 和 93.2%/96.7%/0.949,LR 和 SVM 模型之间无显著差异(P=0.2271)。分割的可重复性非常好(肿瘤的 DSC 为 0.84,BPH 为 0.87)。TZ PCa 与基质性 BPH(AUC=0.976)和<15mm 病变(AUC=0.990)的亚组分析仍具有很高的准确性。

数据结论

纳入先前描述的定量 ADC、形状和纹理分析特征的 LR 和 SVM 模型对 TZ PCa 的诊断具有很高的准确性,并且在与基质性 BPH 比较以及在较小的病变中仍然具有很高的准确性。

证据水平

3 级 技术功效:第 2 阶段 J. 磁共振成像 2019;50:940-950.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验