Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Acta Radiol. 2024 Mar;65(3):307-317. doi: 10.1177/02841851231216555. Epub 2023 Dec 20.
Magnetic resonance imaging (MRI) is useful in the diagnosis of clinically significant prostate cancer (csPCa). MRI-derived radiomics may support the diagnosis of csPCa.
To investigate whether adding radiomics from biparametric MRI to predictive models based on clinical and MRI parameters improves the prediction of csPCa in a multisite-multivendor setting.
Clinical information (PSA, PSA density, prostate volume, and age), MRI reviews (PI-RADS 2.1), and radiomics (histogram and texture features) were retrieved from prospectively included patients examined at different radiology departments and with different MRI systems, followed by MRI-ultrasound fusion guided biopsies of lesions PI-RADS 3-5. Predictive logistic regression models of csPCa (Gleason score ≥7) for the peripheral (PZ) and transition zone (TZ), including clinical data and PI-RADS only, and combined with radiomics, were built and compared using receiver operating characteristic (ROC) curves.
In total, 456 lesions in 350 patients were analyzed. In PZ and TZ, PI-RADS 4-5 and PSA density, and age in PZ, were independent predictors of csPCa in models without radiomics. In models including radiomics, PI-RADS 4-5, PSA density, age, and ADC energy were independent predictors in PZ, and PI-RADS 5, PSA density and ADC mean in TZ. Comparison of areas under the ROC curve (AUC) for the models without radiomics (PZ: AUC = 0.82, TZ: AUC = 0.80) versus with radiomics (PZ: AUC = 0.82, TZ: AUC = 0.82) showed no significant differences (PZ: = 0.366; TZ: = 0.171).
PSA density and PI-RADS are potent predictors of csPCa. Radiomics do not add significant information to our multisite-multivendor dataset.
磁共振成像(MRI)在诊断临床显著前列腺癌(csPCa)方面具有重要作用。MRI 衍生的放射组学可能有助于 csPCa 的诊断。
研究在多中心多供应商环境中,将基于临床和 MRI 参数的预测模型中添加来自双参数 MRI 的放射组学是否可以提高 csPCa 的预测能力。
从不同放射科部门和不同 MRI 系统检查的前瞻性纳入患者中检索临床信息(PSA、PSA 密度、前列腺体积和年龄)、MRI 复查(PI-RADS 2.1)和放射组学(直方图和纹理特征),并对 PI-RADS 3-5 病变进行 MRI-超声融合引导活检。为外周(PZ)和移行区(TZ)建立包含临床数据和 PI-RADS 仅的 csPCa(Gleason 评分≥7)预测逻辑回归模型,并结合放射组学进行比较,使用受试者工作特征(ROC)曲线进行比较。
共分析了 350 名患者的 456 个病变。在 PZ 和 TZ 中,PI-RADS 4-5 和 PSA 密度以及 PZ 中的年龄是无放射组学模型中 csPCa 的独立预测因素。在包含放射组学的模型中,PI-RADS 4-5、PSA 密度、年龄和 ADC 能量是 PZ 的独立预测因素,PI-RADS 5、PSA 密度和 TZ 中的 ADC 均值。无放射组学模型(PZ:AUC=0.82,TZ:AUC=0.80)与放射组学模型(PZ:AUC=0.82,TZ:AUC=0.82)的 ROC 曲线下面积(AUC)比较无显著差异(PZ:=0.366;TZ:=0.171)。
PSA 密度和 PI-RADS 是 csPCa 的有力预测指标。放射组学在我们的多中心多供应商数据集上没有提供重要信息。