Suppr超能文献

黑色素瘤小鼠模型中自发性和免疫治疗诱导的肿瘤消退的病理学。

Pathology of spontaneous and immunotherapy-induced tumor regression in a murine model of melanoma.

机构信息

Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.

出版信息

Pigment Cell Melanoma Res. 2019 May;32(3):448-457. doi: 10.1111/pcmr.12769. Epub 2019 Feb 27.

Abstract

We evaluated the spontaneous and immunotherapy-induced histological changes in the tumor microenvironment of a mouse melanoma regression model consisting of immunocompetent C57BL/6J mice implanted with syngeneic YUMMER1.7 melanoma cells. We focused on tumor regression phenotypes and spatial relationships of melanoma cells with B cells and neutrophils since this was not previously described. We found common themes to the host response to cancer irrespective of the mode of tumor regression. In nonregression tumors, melanoma cells were epithelioid shaped and tightly packed. In regression tumors, melanoma cells were spindle shaped and discohesive. B cells including plasmablasts and plasma cells were numerous and were increased with immunotherapy. Neutrophils were in direct contact with dead or dying melanoma cells. Immunotherapy increased neutrophil counts and induced neutrophil extracellular traps (NETs)-like formations and geographic necrosis. Beyond tumor regression, the increase in the B cell and neutrophil response could play a role in immunotherapy-induced adverse reactions.

摘要

我们评估了由免疫活性 C57BL/6J 小鼠植入同源 YUMMER1.7 黑色素瘤细胞组成的小鼠黑色素瘤消退模型中肿瘤微环境的自发和免疫治疗诱导的组织学变化。我们专注于肿瘤消退表型以及黑色素瘤细胞与 B 细胞和中性粒细胞的空间关系,因为这在以前的描述中没有提到过。我们发现,无论肿瘤消退的模式如何,宿主对癌症的反应都有一些共同的主题。在非消退肿瘤中,黑色素瘤细胞呈上皮样形状且紧密堆积。在消退肿瘤中,黑色素瘤细胞呈梭形且分散。包括浆母细胞和浆细胞在内的 B 细胞数量众多,并随着免疫治疗而增加。中性粒细胞直接与死亡或濒死的黑色素瘤细胞接触。免疫治疗增加了中性粒细胞计数,并诱导中性粒细胞细胞外陷阱(NETs)样形成和局灶性坏死。除了肿瘤消退,B 细胞和中性粒细胞反应的增加可能在免疫治疗诱导的不良反应中发挥作用。

相似文献

1
Pathology of spontaneous and immunotherapy-induced tumor regression in a murine model of melanoma.
Pigment Cell Melanoma Res. 2019 May;32(3):448-457. doi: 10.1111/pcmr.12769. Epub 2019 Feb 27.
2
HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade.
Cancer Immunol Res. 2015 Dec;3(12):1375-85. doi: 10.1158/2326-6066.CIR-15-0077-T. Epub 2015 Aug 21.
3
Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity.
Cancer Immunol Immunother. 2019 Jul;68(7):1095-1106. doi: 10.1007/s00262-019-02346-4. Epub 2019 May 18.
4
Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma.
JCI Insight. 2019 Mar 7;4(5). doi: 10.1172/jci.insight.124989.
5
The Tumor Microenvironment Regulates Sensitivity of Murine Lung Tumors to PD-1/PD-L1 Antibody Blockade.
Cancer Immunol Res. 2017 Sep;5(9):767-777. doi: 10.1158/2326-6066.CIR-16-0365. Epub 2017 Aug 17.
6
Predicting tumour response to anti-PD-1 immunotherapy with computational modelling.
Phys Med Biol. 2019 Jan 16;64(2):025017. doi: 10.1088/1361-6560/aaf96c.
7
Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies.
J Thorac Oncol. 2016 Apr;11(4):524-36. doi: 10.1016/j.jtho.2016.01.013. Epub 2016 Feb 1.
8
T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity.
Nat Commun. 2017 Nov 23;8(1):1747. doi: 10.1038/s41467-017-01830-8.
10
Combination GITR targeting/PD-1 blockade with vaccination drives robust antigen-specific antitumor immunity.
Oncotarget. 2017 Jun 13;8(24):39117-39130. doi: 10.18632/oncotarget.16605.

引用本文的文献

2
NETs: an extracellular DNA network structure with implication for cardiovascular disease and cancer.
Hypertens Res. 2024 May;47(5):1260-1272. doi: 10.1038/s41440-023-01574-7. Epub 2024 Mar 5.
3
Dormancy of cutaneous melanoma.
Cancer Cell Int. 2024 Feb 28;24(1):88. doi: 10.1186/s12935-024-03278-5.
4
Melanoma-derived soluble mediators modulate neutrophil biological properties and the release of neutrophil extracellular traps.
Cancer Immunol Immunother. 2023 Oct;72(10):3363-3376. doi: 10.1007/s00262-023-03493-5. Epub 2023 Jul 31.
7
T Cell Extracellular Traps: Tipping the Balance Between Skin Health and Disease.
Front Immunol. 2022 Jun 20;13:900634. doi: 10.3389/fimmu.2022.900634. eCollection 2022.
9
The Role of Neutrophil Extracellular Traps in Cancer.
Front Oncol. 2021 Aug 12;11:714357. doi: 10.3389/fonc.2021.714357. eCollection 2021.
10
Hypoxia potentiates the capacity of melanoma cells to evade cisplatin and doxorubicin cytotoxicity via glycolytic shift.
FEBS Open Bio. 2020 May;10(5):789-801. doi: 10.1002/2211-5463.12830. Epub 2020 Apr 14.

本文引用的文献

1
Sentinel lymph node B cells can predict disease-free survival in breast cancer patients.
NPJ Breast Cancer. 2018 Aug 23;4:28. doi: 10.1038/s41523-018-0081-7. eCollection 2018.
2
Neutrophil extracellular traps in immunity and disease.
Nat Rev Immunol. 2018 Feb;18(2):134-147. doi: 10.1038/nri.2017.105. Epub 2017 Oct 9.
4
B cells and the humoral response in melanoma: The overlooked players of the tumor microenvironment.
Oncoimmunology. 2017 Mar 3;6(4):e1294296. doi: 10.1080/2162402X.2017.1294296. eCollection 2017.
5
UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model.
Pigment Cell Melanoma Res. 2017 Jul;30(4):428-435. doi: 10.1111/pcmr.12591. Epub 2017 Jun 8.
6
Opportunistic autoimmunity secondary to cancer immunotherapy (OASI): An emerging challenge.
Rev Med Interne. 2017 Aug;38(8):513-525. doi: 10.1016/j.revmed.2017.01.004. Epub 2017 Feb 15.
7
Defining the morphologic features and products of cell disassembly during apoptosis.
Apoptosis. 2017 Mar;22(3):475-477. doi: 10.1007/s10495-017-1345-7.
10
Regression in cutaneous melanoma: a comprehensive review from diagnosis to prognosis.
J Eur Acad Dermatol Venereol. 2016 Dec;30(12):2030-2037. doi: 10.1111/jdv.13815. Epub 2016 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验