Suppr超能文献

类金属酶有机金属纳米管中庞大底物的内配位

Endohedral Coordination of Bulky Substrates in Metalloenzyme-Like Organometallic Nanotubes.

作者信息

Pickl Thomas, Mollik Patrick, Anneser Markus R, Sixt Florian, Geißer Korbinian, Storcheva Oksana, Halter Dominik P, Pöthig Alexander

机构信息

Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany.

Department of Biochemical and Chemical Engineering, Research Group Applied Electrochemistry & Catalysis (ELCAT), Faculty of Applied Engineering, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.

出版信息

Chemistry. 2025 May 27;31(30):e202500775. doi: 10.1002/chem.202500775. Epub 2025 May 3.

Abstract

Artificial receptors inspired by metalloenzymes share three key properties: a structurally flexible cavity, substrate binding via metal-ligand coordination, and metal-based redox activity. Herein, we report an organometallic nanotube with such features based on our supramolecular pillarplex platform, incorporating eight Cu centers in its cavitand walls. The structurally adaptable cavity of this receptor enables the endohedral coordination of tetrahydrofuran (THF) as a hydrophilic model substrate with remarkable binding affinity despite a steric mismatch between the host and guest. Evidence from SC-XRD, H NMR titration in aqueous solution, and DFT modelling confirms that metal-ligand coordination governs substrate binding. Electrochemical analysis of a derived rotaxane reveals metal-centered redox activity.

摘要

受金属酶启发的人工受体具有三个关键特性

结构灵活的空腔、通过金属-配体配位进行底物结合以及基于金属的氧化还原活性。在此,我们基于超分子柱状配合物平台报道了一种具有此类特征的有机金属纳米管,其空穴壁中包含八个铜中心。该受体结构上可适应的空腔能够实现四氢呋喃(THF)作为亲水性模型底物的内配位,尽管主体与客体之间存在空间不匹配,但仍具有显著的结合亲和力。单晶X射线衍射(SC-XRD)、水溶液中的核磁共振氢谱(H NMR)滴定以及密度泛函理论(DFT)建模的证据证实,金属-配体配位控制着底物结合。对一种衍生的轮烷进行的电化学分析揭示了以金属为中心的氧化还原活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1e/12117177/e07b05058114/CHEM-31-e202500775-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验