Suppr超能文献

用于亚临床炎症中类风湿性关节炎预测的膝关节热成像图的两阶段分类

2-Stage classification of knee joint thermograms for rheumatoid arthritis prediction in subclinical inflammation.

作者信息

Bardhan Shawli, Bhowmik Mrinal Kanti

机构信息

Computer Science and Engineering, Tripura University, Suryamaninagar, Tripura, 799022, India.

出版信息

Australas Phys Eng Sci Med. 2019 Mar;42(1):259-277. doi: 10.1007/s13246-019-00726-9. Epub 2019 Jan 31.

Abstract

Presence of inflammation in knee joint is the early indication of arthritis. In this paper, we performed the inflamed region segmentation from knee joint thermograms for structural feature extraction based knee abnormality prediction. Existing four popular segmentation techniques are investigated, namely K-means, Fuzzy C-means, Otsu, Single seeded region growing. We proposed modified multi-seeded region growing method that generates 98.6% accurate segmentation rate compared to ground truth of inflammation. Based on the spread of the inflammation oriented structural feature analysis, in the first stage of classification we classified arthritis affected knee joint thermograms, and all other types of thermograms (non-arthritis) with 91% accuracy. Among different types of arthritis, the most damaging type that causes disability of joints in long run is known as rheumatoid arthritis (RA). Early diagnosis of RA in subclinical stage enormously helps clinicians to decrease the disease affect. In second stage of classification, we integrated the RA and non-RA categorization by extracting texture, shape and frequency level features. Experiment shows that the combination of all features decreases the accurate detection rate of RA classification. To increase the classification rate, we incorporated the accuracy based feature selection procedure. The RA classification rate obtained with accuracy based feature selection is 73% whereas existing support vector machine-recursive feature elimination (SVM-RFE) and RELIEF methods provide 67% and 71% correct classification rate respectively. The area under the curve (AUC) of accuracy based feature selection, SVM-RFE, and RELIEF for RA classification are 0.72, 0.65 and 0.67, respectively and it indicates better classification outcome of the accuracy based feature selection method.

摘要

膝关节炎症的存在是关节炎的早期迹象。在本文中,我们从膝关节热成像图中进行炎症区域分割,以提取基于结构特征的膝关节异常预测。研究了现有的四种流行分割技术,即K均值、模糊C均值、大津法、单种子区域生长法。我们提出了改进的多种子区域生长法,与炎症的真实情况相比,该方法产生了98.6%的准确分割率。基于炎症导向的结构特征分析的传播,在分类的第一阶段,我们对受关节炎影响的膝关节热成像图和所有其他类型的热成像图(非关节炎)进行分类,准确率为91%。在不同类型的关节炎中,从长远来看导致关节残疾的最具破坏性的类型被称为类风湿性关节炎(RA)。在亚临床阶段对RA进行早期诊断极大地有助于临床医生减少疾病影响。在分类的第二阶段,我们通过提取纹理、形状和频率水平特征来整合RA和非RA的分类。实验表明,所有特征的组合降低了RA分类的准确检测率。为了提高分类率,我们纳入了基于准确率的特征选择程序。基于准确率的特征选择获得的RA分类率为73%,而现有的支持向量机递归特征消除(SVM-RFE)和RELIEF方法分别提供67%和71%的正确分类率。基于准确率的特征选择、SVM-RFE和RELIEF用于RA分类的曲线下面积(AUC)分别为0.72、0.65和0.67,这表明基于准确率的特征选择方法具有更好的分类结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验