National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China.
National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China.
Chemosphere. 2019 May;222:286-294. doi: 10.1016/j.chemosphere.2019.01.121. Epub 2019 Jan 25.
To protect public health by providing an early warning, PM concentration forecasting is an essential and effective work. In this paper, an ensemble long short-term memory neural network (E-LSTM) is proposed for hourly PM concentration forecasting. The presented model is implemented using three steps: (1) ensemble empirical mode decomposition (EEMD) is firstly utilized for multi-modal feature extraction, (2) long short-term memory approach (LSTM) is then employed for multi-modal feature learning, and (3) inverse EEMD computation is finally used for multi-modal feature estimated integration. In each modeling process, the mode information of the PM and the corresponding meteorological variables in 1-h advance are utilized as inputs to forecast the next mode information of the PM concentration. To evaluate the performance of the E-LSTM model, two datasets collected from two environmental monitoring stations in Beijing, China, are investigated. It is demonstrated that the E-LSTM model inspired by ensemble learning, which constructs multiple LSTMs in different modes, obtained better forecasting performance than that using the single LSTM and feed forward neural network in terms of mean absolute percentage error (19.604% and 16.929%), root mean square error (12.077 μg m and 13.983 μg m), and correlation coefficient criteria (0.994 and 0.991) respectively.
为了通过提供早期预警来保护公众健康,PM 浓度预测是一项必要且有效的工作。本文提出了一种用于小时 PM 浓度预测的集成长短期记忆神经网络 (E-LSTM)。所提出的模型通过三个步骤实现:(1) 首先使用集合经验模态分解 (EEMD) 进行多模态特征提取,(2) 然后使用长短时记忆方法 (LSTM) 进行多模态特征学习,以及 (3) 最后使用逆 EEMD 计算进行多模态特征估计集成。在每个建模过程中,将 PM 的模态信息和 1 小时提前的相应气象变量用作输入,以预测 PM 浓度的下一个模态信息。为了评估 E-LSTM 模型的性能,研究了来自中国北京两个环境监测站的两个数据集。结果表明,基于集合学习的 E-LSTM 模型,构建了多个不同模态的 LSTM,在平均绝对百分比误差 (19.604% 和 16.929%)、均方根误差 (12.077μg/m 和 13.983μg/m) 和相关系数标准 (0.994 和 0.991) 方面,均比使用单个 LSTM 和前馈神经网络的模型具有更好的预测性能。