Ruiz M L, Simón A, García M C, Janssen D
IFAPA Centro La Mojonera, Camino de San Nicolas 1,04745 La Mojonera, Spain.
Plant Dis. 2014 Jun;98(6):857. doi: 10.1094/PDIS-09-13-0939-PDN.
In September 2011, symptoms typically associated with Bean yellow disorder virus (BYDV) such as intervenal mottling and yellowing on middle and lower leaves combined with brittleness were observed in green bean (Phaseolus vulgaris L.) produced in commercial greenhouses from Granada and Almeria provinces, Spain. The affected plants were all observed in greenhouses infested with Bemisia tabaci. However, collected samples tested negative for BYDV using a specific RT-PCR test (4). Electrophoretic double stranded (ds) RNA analysis from symptomatic plants revealed the presence of a slightly diffused high molecular weight dsRNA band of ~8.5 kb, similar to that produced by the crinivirus Lettuce cholorosis virus (LCV) (3). The dsRNA was purified and used for cDNA synthesis and PCR by uneven PCR (1) using primers derived from LCV genome sequences (GenBank FJ380118 and FJ380119). Amplified DNA fragments were cloned in pGEM-T Easy vector (Promega, Madison, WI) and sequenced. Two different sequences were obtained and the nucleotide and amino acid sequences were analysed using BLAST. Both showed the highest identity with different regions of the LCV genome. The sequence of the first product had 92% nucleotide and 98% amino acid sequence identity with the polyprotein (Orf1a) homologue from RNA1 of LCV (KC602376). The sequence from the second product (KC602375) revealed the highest nucleotide and amino acid identity with the heat shock protein 70 homologue from LCV (90% and 99%, respectively). Based on these sequences, two sets of specific primers were designed (LCVSP 3-forward 5'-AGTGACACAAGTTGGAGCCGAC-3', LCVSP 4-low 5'-CAGTGTTTGTTGGATATCTGGGG-3') and (LCVSP 1-forward 5'-TGTTGGAAGGTGGTGAGGTC-3', LCVSP 2-low 5'-CAGAGACGAGTCATACGTACC-3') and each produced amplicons of the expected size (463 and 434 nt, respectively) when used in RT-PCR from the collected field samples. Subsequent field surveys from 2012 to 2013 in commercial bean greenhouses confirmed the presence of LCV that apparently had replaced BYDV. Groups of 15 to 20 adults of B. tabaci introduced in clip cages were fed for 24 h on 12 green bean plants infected with LCV and later transferred to six seedlings of bean and six of lettuce (Lactuca sativa L.). After 2 and 4 weeks, total RNA from the lettuce and bean plants was extracted using Plant RNA Reagent (Invitrogen) and subjected to RT-PCR analysis with the LCV-SP 1-2 and LCVSP 3-4 primer sets. All six plants of bean and none of lettuce showed positive for LCV-SP and a repeat experiment revealed identical results. We also seeded and produced lettuce plants within a bean greenhouse that was naturally infected with the virus and infested with B tabaci whiteflies. Under these conditions, we observed that whiteflies migrated freely from the infected bean plants to lettuce. After 4 and 6 weeks, lettuce plants neither produced symptoms nor tested positive for LCV by RT-PCR. This result confirms the existence of a new putative strain of LCV, Lettuce chlorosis virus-SP, unable to infect lettuce plants. To date, natural infections of LCV have not been reported outside California, where the virus failed to infect P. vulgaris (2). This is also the first report of LCV in Spain that infects members of the family Leguminosae. Green bean in southeast Spain was produced in ~9,000 ha of greenhouses until the introduction of BYDV a decade ago, causing considerable economic damage. The recent finding of LCV-SP has urged the local phytosanitary inspections to include this virus in lab tests and to emphasize disease management strategies based on whitefly control. References: (1) X. Chen and R. Wu. Gene 185:195, 1997. (2) J. Duffus et al. Eur. J. Plant Pathol. 102:591, 1996. (3) N. M. Salem et al. Virology 390:45, 2009. (4) E. Segundo et al. Plant Pathol. 53:517, 2004.
2011年9月,在西班牙格拉纳达省和阿尔梅里亚省商业温室种植的菜豆(Phaseolus vulgaris L.)中,观察到了与菜豆黄花叶病病毒(BYDV)相关的典型症状,如叶脉间斑驳、中下部叶片发黄并伴有叶片变脆。所有受影响的植株均在被烟粉虱侵染的温室中发现。然而,使用特异性RT-PCR检测(4)对采集的样本进行检测,结果显示BYDV呈阴性。对有症状植株进行的电泳双链(ds)RNA分析显示,存在一条约8.5 kb的稍有扩散的高分子量dsRNA条带,与马铃薯卷叶病毒属的莴苣褪绿病毒(LCV)产生的条带相似(3)。纯化该dsRNA,并使用来自LCV基因组序列(GenBank FJ380118和FJ380119)的引物,通过不对称PCR(1)进行cDNA合成和PCR。将扩增的DNA片段克隆到pGEM-T Easy载体(Promega,麦迪逊,威斯康星州)中并进行测序。获得了两个不同的序列,并使用BLAST对核苷酸和氨基酸序列进行分析。二者与LCV基因组的不同区域显示出最高的同源性。第一个产物的序列与LCV RNA1的多聚蛋白(Orf1a)同源物(KC602376)具有92%的核苷酸序列同源性和98%的氨基酸序列同源性。第二个产物(KC602375)的序列与LCV的热激蛋白70同源物具有最高的核苷酸和氨基酸同源性(分别为90%和99%)。基于这些序列,设计了两组特异性引物(LCVSP 3正向引物5'-AGTGACACAAGTTGGAGCCGAC-3',LCVSP 4反向引物5'-CAGTGTTTGTTGGATATCTGGGG-3')和(LCVSP 1正向引物5'-TGTTGGAAGGTGGTGAGGTC-3',LCVSP 2反向引物5'-CAGAGACGAGTCATACGTACC-3'),当用于对采集的田间样本进行RT-PCR时,每组引物均产生了预期大小的扩增子(分别为463和434 nt)。随后在2012年至2013年对商业菜豆温室进行的田间调查证实了LCV的存在,显然它已取代了BYDV。将15至20只烟粉虱成虫放入笼罩中,让它们在12株感染LCV的菜豆植株上取食24小时,随后转移到6株菜豆幼苗和6株生菜(Lactuca sativa L.)幼苗上。2周和4周后,使用植物RNA提取试剂(Invitrogen)从生菜和菜豆植株中提取总RNA,并使用LCV-SP 1-2和LCVSP 3-4引物组进行RT-PCR分析。所有6株菜豆植株均显示LCV-SP呈阳性,而生菜植株均未显示阳性,重复实验得到了相同的结果。我们还在一个自然感染该病毒且有烟粉虱侵染的菜豆温室内播种并培育生菜植株。在这些条件下,我们观察到粉虱从受感染的菜豆植株自由迁移到生菜上。4周和6周后,生菜植株既未出现症状,RT-PCR检测LCV也未呈阳性。这一结果证实了存在一种新的假定的LCV株系,即莴苣褪绿病毒-SP,它无法感染生菜植株。迄今为止,除加利福尼亚州外,尚未报道过LCV的自然感染情况,在加利福尼亚州该病毒未能感染菜豆(2)。这也是西班牙关于LCV感染豆科植物成员的首次报道。在十年前引入BYDV之前,西班牙东南部约9000公顷的温室种植菜豆,造成了相当大的经济损失。最近发现的LCV-SP促使当地植物检疫检查将该病毒纳入实验室检测,并强调基于粉虱控制的病害管理策略。参考文献:(1)X. Chen和R. Wu。Gene 185:195,1997。(2)J. Duffus等人。Eur. J. Plant Pathol. 102:591,1996。(3)N. M. Salem等人。Virology 390:45,2009。(4)E. Segundo等人。Plant Pathol. 53:517,2004。