Suppr超能文献

在人类闭环感觉/运动脑机接口系统中通过皮层刺激产生躯体感觉的技术考量。

Technical considerations for generating somatosensation via cortical stimulation in a closed-loop sensory/motor brain-computer interface system in humans.

作者信息

Kramer Daniel R, Kellis Spencer, Barbaro Michael, Salas Michelle Armenta, Nune George, Liu Charles Y, Andersen Richard A, Lee Brian

机构信息

Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA.

Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, CA, USA.

出版信息

J Clin Neurosci. 2019 May;63:116-121. doi: 10.1016/j.jocn.2019.01.027. Epub 2019 Jan 31.

Abstract

Somatosensory feedback is the next step in brain computer interface (BCI). Here, we compare three cortical stimulating array modalities for generating somatosensory percepts in BCI. We compared human subjects with either a 64-channel "mini"-electrocorticography grid (mECoG; 1.2-mm diameter exposed contacts with 3-mm spacing, N = 1) over the hand area of primary somatosensory cortex (S1), or a standard grid (sECoG; 1.5-mm diameter exposed contacts with 1-cm spacing, N = 1), to generate artificial somatosensation through direct electrical cortical stimulation. Finally, we reference data in the literature from a patient implanted with microelectrode arrays (MEA) placed in the S1 hand area. We compare stimulation results to assess coverage and specificity of the artificial percepts in the hand. Using the mECoG array, hand mapping revealed coverage of 41.7% of the hand area versus 100% for the sECoG array, and 18.8% for the MEA. On average, stimulation of a single electrode corresponded to sensation reported in 4.42 boxes (range 1-11 boxes) for the mECoG array, 19.11 boxes (range 4-48 boxes) for the sECoG grid, and 2.3 boxes (range 1-5 boxes) for the MEA. Sensation in any box, on average, corresponded to stimulation from 2.65 electrodes (range 1-5 electrodes) for the mECoG grid, 3.58 electrodes for the sECoG grid (range 2-4 electrodes), and 11.22 electrodes (range 2-17 electrodes) for the MEA. Based on these findings, we conclude that mECoG grids provide an excellent balance between spatial cortical coverage of the hand area of S1 and high-density resolution.

摘要

体感反馈是脑机接口(BCI)的下一步发展方向。在此,我们比较了三种皮质刺激阵列模式,以在BCI中产生体感感知。我们将人类受试者与放置在初级体感皮层(S1)手部区域的64通道“微型”脑电皮层电图网格(mECoG;直径1.2毫米的暴露触点,间距3毫米,N = 1)或标准网格(sECoG;直径1.5毫米的暴露触点,间距1厘米,N = 1)进行比较,通过直接皮层电刺激来产生人工体感。最后,我们参考了文献中一位在S1手部区域植入微电极阵列(MEA)的患者的数据。我们比较刺激结果,以评估手部人工感知的覆盖范围和特异性。使用mECoG阵列,手部映射显示手部区域的覆盖范围为41.7%,而sECoG阵列的覆盖范围为100%,MEA的覆盖范围为18.8%。平均而言,对于mECoG阵列,单个电极的刺激对应于4.42个方格(范围为1 - 11个方格)报告的感觉,对于sECoG网格为19.11个方格(范围为4 - 48个方格),对于MEA为2.3个方格(范围为1 - 5个方格)。平均而言,任何一个方格中的感觉对应于mECoG网格中2.65个电极(范围为1 - 5个电极)的刺激,sECoG网格为3.58个电极(范围为2 - 4个电极),MEA为11.22个电极(范围为2 - 17个电极)。基于这些发现,我们得出结论,mECoG网格在S1手部区域的空间皮层覆盖范围和高密度分辨率之间提供了出色的平衡。

相似文献

4
Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration.
Brain Stimul. 2021 Sep-Oct;14(5):1184-1196. doi: 10.1016/j.brs.2021.07.009. Epub 2021 Aug 3.
5
Human perception of electrical stimulation on the surface of somatosensory cortex.
PLoS One. 2017 May 10;12(5):e0176020. doi: 10.1371/journal.pone.0176020. eCollection 2017.
8
Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries.
J Neural Eng. 2017 Oct;14(5):056004. doi: 10.1088/1741-2552/aa785e. Epub 2017 Jun 9.
9
Electrocorticographic changes in field potentials following natural somatosensory percepts in humans.
Exp Brain Res. 2019 May;237(5):1155-1167. doi: 10.1007/s00221-019-05495-1. Epub 2019 Feb 22.

引用本文的文献

1
Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.
Curr Biol. 2025 Jan 20;35(2):431-443.e4. doi: 10.1016/j.cub.2024.11.069. Epub 2025 Jan 6.
2
Behavioral paradigm for the evaluation of stimulation-evoked somatosensory perception thresholds in rats.
Front Neurosci. 2023 Jun 13;17:1202258. doi: 10.3389/fnins.2023.1202258. eCollection 2023.
3
Behavioral Paradigm for the Evaluation of Stimulation-Evoked Somatosensory Perception Thresholds in Rats.
bioRxiv. 2023 May 5:2023.05.04.537848. doi: 10.1101/2023.05.04.537848.
4
Neuroprosthetics: from sensorimotor to cognitive disorders.
Commun Biol. 2023 Jan 6;6(1):14. doi: 10.1038/s42003-022-04390-w.
5
Intracortical Somatosensory Stimulation to Elicit Fingertip Sensations in an Individual With Spinal Cord Injury.
Neurology. 2022 Feb 15;98(7):e679-e687. doi: 10.1212/WNL.0000000000013173. Epub 2021 Dec 8.
6
Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration.
Brain Stimul. 2021 Sep-Oct;14(5):1184-1196. doi: 10.1016/j.brs.2021.07.009. Epub 2021 Aug 3.
7
Mapping the Dimensions of Agency.
AJOB Neurosci. 2021 Apr-Sep;12(2-3):172-186. doi: 10.1080/21507740.2021.1896599. Epub 2021 Mar 25.

本文引用的文献

1
Engineering Artificial Somatosensation Through Cortical Stimulation in Humans.
Front Syst Neurosci. 2018 Jun 4;12:24. doi: 10.3389/fnsys.2018.00024. eCollection 2018.
3
A Chronically Implantable Bidirectional Neural Interface for Non-human Primates.
Front Neurosci. 2017 Sep 15;11:514. doi: 10.3389/fnins.2017.00514. eCollection 2017.
5
Ownership of an artificial limb induced by electrical brain stimulation.
Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):166-171. doi: 10.1073/pnas.1616305114. Epub 2016 Dec 19.
6
Intracortical microstimulation of human somatosensory cortex.
Sci Transl Med. 2016 Oct 19;8(361):361ra141. doi: 10.1126/scitranslmed.aaf8083. Epub 2016 Oct 13.
8
Clinical translation of a high-performance neural prosthesis.
Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28.
9
Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography.
Clin Neurophysiol. 2016 Jan;127(1):591-601. doi: 10.1016/j.clinph.2015.06.002. Epub 2015 Jun 11.
10
Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human.
Science. 2015 May 22;348(6237):906-10. doi: 10.1126/science.aaa5417.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验