Suppr超能文献

使用高密度皮层脑电图网格绘制手部区域的初级体感皮层,用于闭环脑机接口。

Mapping of primary somatosensory cortex of the hand area using a high-density electrocorticography grid for closed-loop brain computer interface.

作者信息

Kramer Daniel R, Lee Morgan B, Barbaro Michael F, Gogia Angad S, Peng Terrance, Liu Charles Y, Kellis Spencer, Lee Brian

机构信息

Department of Neurosurgery, University of Southern California, Los Angeles, CA, United States of America.

NeuroRestoration Center, University of Southern California, Los Angeles, CA, United States of America.

出版信息

J Neural Eng. 2021 Mar 4;18(3). doi: 10.1088/1741-2552/ab7c8e.

Abstract

The ideal modality for generating sensation in sensorimotor brain computer interfaces (BCI) has not been determined. Here we report the feasibility of using a high-density 'mini'-electrocorticography (mECoG) grid in a somatosensory BCI system.Thirteen subjects with intractable epilepsy underwent standard clinical implantation of subdural electrodes for the purpose of seizure localization. An additional high-density mECoG grid was placed (Adtech, 8 by 8, 1.2 mm exposed, 3 mm center-to-center spacing) over the hand area of primary somatosensory cortex. Following implantation, cortical mapping was performed with stimulation parameters of frequency: 50 Hz, pulse-width: 250s, pulse duration: 4 s, polarity: alternating, and current that ranged from 0.5 mA to 12 mA at the discretion of the epileptologist. Location of the evoked sensory percepts was recorded along with a description of the sensation. The hand was partitioned into 48 distinct boxes. A box was included if sensation was felt anywhere within the box.The percentage of the hand covered was 63.9% (± 34.4%) (mean ± s.d.). Mean redundancy, measured as electrode pairs stimulating the same box, was 1.9 (± 2.2) electrodes per box; and mean resolution, measured as boxes included per electrode pair stimulation, was 11.4 (± 13.7) boxes with 8.1 (± 10.7) boxes in the digits and 3.4 (± 6.0) boxes in the palm. Functional utility of the system was assessed by quantifying usable percepts. Under the strictest classification, 'dermatomally exclusive' percepts, the mean was 2.8 usable percepts per grid. Allowing 'perceptually unique' percepts at the same anatomical location, the mean was 5.5 usable percepts per grid.Compared to the small area of coverage and redundancy of a microelectrode system, or the poor resolution of a standard ECoG grid, a mECoG is likely the best modality for a somatosensory BCI system with good coverage of the hand and minimal redundancy.

摘要

在感觉运动脑机接口(BCI)中,用于产生感觉的理想方式尚未确定。在此,我们报告了在体感BCI系统中使用高密度“微型”脑电皮层电图(mECoG)网格的可行性。13名患有顽固性癫痫的受试者接受了硬膜下电极的标准临床植入,目的是进行癫痫灶定位。在初级体感皮层的手部区域上方额外放置了一个高密度mECoG网格(Adtech,8×8,暴露1.2毫米,中心间距3毫米)。植入后,以频率50赫兹、脉宽250微秒、脉冲持续时间4秒、极性交替以及由癫痫专家酌情决定的0.5毫安至12毫安的电流作为刺激参数进行皮层映射。记录诱发感觉知觉的位置以及感觉的描述。手部被划分为48个不同的区域。如果在某个区域内的任何位置都能感觉到感觉,则该区域被纳入统计。手部被覆盖的百分比为63.9%(±34.4%)(平均值±标准差)。平均冗余度,以刺激同一区域的电极对数量来衡量,为每个区域1.9(±2.2)个电极;平均分辨率,以每个电极对刺激所包含的区域数量来衡量,为11.4(±13.7)个区域,其中手指部分为8.1(±10.7)个区域,手掌部分为3.4(±6.0)个区域。通过量化可用知觉来评估该系统的功能效用。在最严格的分类,即“皮节排他性”知觉下,每个网格的平均可用知觉数为2.8个。允许在相同解剖位置出现“知觉独特性”知觉时,每个网格的平均可用知觉数为5.5个。与微电极系统覆盖面积小和冗余度高,或标准ECoG网格分辨率低相比,mECoG可能是手部覆盖良好且冗余度最小的体感BCI系统的最佳方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbff/7483626/f3d1d81495e7/nihms-1587432-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验