School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Mol Phylogenet Evol. 2019 May;134:66-73. doi: 10.1016/j.ympev.2019.01.017. Epub 2019 Jan 31.
The Dictyostelid social amoebas are a popular model system for cell- and developmental biology and for evolution of sociality. Small subunit (SSU) ribosomal DNA-based phylogenies subdivide the known 150 species into four major and some minor groups, but lack resolution within groups, particularly group 4, and, as shown by genome-based phylogenies of 11 species, showed errors in the position of the root and nodes separating major clades. We are interested in the evolution of cell-type specialization, which particularly expanded in group 4. To construct a more robust phylogeny, we first included 7 recently sequenced genomes in the genome-based phylogeny of 47 functionally divergent proteins and next selected 6 proteins (Agl, AmdA, PurD, PurL, RpaA, SmdA) that independently or in sets of two fully reproduced the core-phylogeny. We amplified their coding regions from 34 Dictyostelium species and combined their concatenated sequences with those identified in the 18 genomes to generate a fully resolved phylogeny. The new AAPPRS based phylogeny (after the acronym of the 6 proteins) subdivides group 4 into 2 branches. These branches further resolve into 5 clades, rather than the progressively nested group 4 topology of the SSU rDNA tree, and also re-orders taxa in the other major groups. Ancestral state reconstruction of 25 phenotypic traits returned higher "goodness of fit" metrics for evolution of 19 of those traits over the AAPPRS tree, than over the SSU rDNA tree. The novel tree provides a solid framework for studying the evolution of cell-type specialization, signalling and other cellular processes in particularly group 4, which contains the model Dictyostelid D. discoideum.
粘菌的社会变形虫是细胞和发育生物学以及社会性进化的一个流行模式系统。基于小亚基(SSU)核糖体 DNA 的系统发育将已知的 150 个物种分为四个主要组和一些小的组,但在组内缺乏分辨率,特别是组 4,并且,如 11 个物种的基于基因组的系统发育所示,在分离主要分支的根和节点的位置上存在错误。我们对细胞类型特化的进化感兴趣,特别是在组 4 中得到了极大的扩展。为了构建更稳健的系统发育,我们首先在 47 种功能分化蛋白的基于基因组的系统发育中包含了 7 个最近测序的基因组,接下来选择了 6 种蛋白(Agl、AmdA、PurD、PurL、RpaA、SmdA),它们独立或成组地完全重现了核心系统发育。我们从 34 种粘菌物种中扩增了它们的编码区,并将它们的串联序列与 18 个基因组中鉴定的序列结合起来,生成了一个完全解决的系统发育。新的基于 AAPPRS 的系统发育(来自 6 种蛋白的首字母缩写)将组 4 分为 2 个分支。这些分支进一步分为 5 个分支,而不是 SSU rDNA 树的渐进嵌套组 4 拓扑,也对其他主要组中的分类单元进行了重新排序。25 个性状的祖先状态重建返回了更高的“拟合度”指标,表明在 AAPPRS 树上,19 个性状的进化比在 SSU rDNA 树上更好。新的树为研究细胞类型特化、信号转导和其他细胞过程的进化提供了一个坚实的框架,特别是组 4 中包含了模式粘菌 D. discoideum。