Department of Radiology, University of California, San Diego, California.
Department of Psychiatry, University of California, San Diego, California.
Magn Reson Med. 2019 May;81(5):3283-3291. doi: 10.1002/mrm.27680. Epub 2019 Feb 3.
Delayed enhancement imaging is an essential component of cardiac MRI, which is used widely for the evaluation of myocardial scar and viability. The selection of an optimal inversion time (TI) or null point (TI ) to suppress the background myocardial signal is required. The purpose of this study was to assess the feasibility of automated selection of TI using a convolutional neural network (CNN). We hypothesized that a CNN may use spatial and temporal imaging characteristics from an inversion-recovery scout to select TI , without the aid of a human observer.
We retrospectively collected 425 clinically acquired cardiac MRI exams performed at 1.5 T that included inversion-recovery scout acquisitions. We developed a VGG19 classifier ensembled with long short-term memory to identify the TI . We compared the performance of the ensemble CNN in predicting TI against ground truth, using linear regression analysis. Ground truth was defined as the expert physician annotation of the optimal TI. In a backtrack approach, saliency maps were generated to interpret the classification outcome and to increase the model's transparency.
Prediction of TI from our ensemble VGG19 long short-term memory closely matched with expert annotation (ρ = 0.88). Ninety-four percent of the predicted TI were within ±36 ms, and 83% were at or after expert TI selection.
In this study, we show that a CNN is capable of automated prediction of myocardial TI from an inversion-recovery experiment. Merging the spatial and temporal characteristics of the VGG-19 and long short-term-memory CNN structures appears to be sufficient to predict myocardial TI from TI scout.
延迟增强成像(DEI)是心脏 MRI 的重要组成部分,广泛用于评估心肌瘢痕和活力。需要选择最佳反转时间(TI)或零点(TI)来抑制背景心肌信号。本研究旨在评估使用卷积神经网络(CNN)自动选择 TI 的可行性。我们假设,CNN 可以使用反转恢复扫描的空间和时间成像特征来选择 TI,而无需人类观察者的帮助。
我们回顾性地收集了在 1.5 T 上进行的 425 项临床心脏 MRI 检查,其中包括反转恢复扫描采集。我们开发了一个由 VGG19 分类器和长短期记忆组成的集成模型来识别 TI。我们使用线性回归分析比较了集成 CNN 在预测 TI 方面的性能与真实值,真实值定义为专家医生对最佳 TI 的注释。在回溯方法中,生成了显着性映射来解释分类结果并提高模型的透明度。
我们的集成 VGG19 长短期记忆预测 TI 与专家注释非常吻合(ρ=0.88)。94%的预测 TI 在±36 ms 以内,83%的预测 TI 在专家 TI 选择之后。
在这项研究中,我们表明 CNN 能够从反转恢复实验中自动预测心肌 TI。融合 VGG-19 和长短期记忆 CNN 结构的空间和时间特征似乎足以从 TI 扫描中预测心肌 TI。