Suppr超能文献

认知听觉科学与语言理解的简易度。

Cognitive hearing science and ease of language understanding.

机构信息

a Department of Behavioural Sciences and Learning , Linnaeus Centre HEAD, The Swedish Institute for Disability Research, Linköping University , Linköping , Sweden.

出版信息

Int J Audiol. 2019 May;58(5):247-261. doi: 10.1080/14992027.2018.1551631. Epub 2019 Feb 3.

Abstract

OBJECTIVE

The current update of the Ease of Language Understanding (ELU) model evaluates the predictive and postdictive aspects of speech understanding and communication.

DESIGN

The aspects scrutinised concern: (1) Signal distortion and working memory capacity (WMC), (2) WMC and early attention mechanisms, (3) WMC and use of phonological and semantic information, (4) hearing loss, WMC and long-term memory (LTM), (5) WMC and effort, and (6) the ELU model and sign language. Study Samples: Relevant literature based on own or others' data was used.

RESULTS

Expectations 1-4 are supported whereas 5-6 are constrained by conceptual issues and empirical data. Further strands of research were addressed, focussing on WMC and contextual use, and on WMC deployment in relation to hearing status. A wider discussion of task demands, concerning, for example, inference-making and priming, is also introduced and related to the overarching ELU functions of prediction and postdiction. Finally, some new concepts and models that have been inspired by the ELU-framework are presented and discussed.

CONCLUSIONS

The ELU model has been productive in generating empirical predictions/expectations, the majority of which have been confirmed. Nevertheless, new insights and boundary conditions need to be experimentally tested to further shape the model.

摘要

目的

当前对语言理解简易度(ELU)模型的更新评估了言语理解和交流的预测和后测方面。

设计

仔细审查的方面涉及:(1)信号失真和工作记忆容量(WMC),(2)WMC 和早期注意机制,(3)WMC 和语音及语义信息的使用,(4)听力损失、WMC 和长期记忆(LTM),(5)WMC 和努力,以及(6)ELU 模型和手语。

研究样本

使用了基于自身或他人数据的相关文献。

结果

期望 1-4 得到了支持,而期望 5-6 受到概念问题和经验数据的限制。进一步探讨了研究方向,重点关注 WMC 和上下文使用,以及 WMC 在听力状况方面的部署。还引入并讨论了关于推理和启动等任务需求的更广泛讨论,并与预测和后测的总体 ELU 功能相关。最后,提出并讨论了一些受 ELU 框架启发的新概念和模型。

结论

ELU 模型在产生经验预测/期望方面卓有成效,其中大多数已经得到证实。然而,需要通过实验测试来获得新的见解和边界条件,以进一步塑造该模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验