Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China.
Phys Chem Chem Phys. 2019 Feb 13;21(7):4022-4031. doi: 10.1039/c8cp07501h.
Fullerenols have garnered significant scientific interest in nano-technology and biomedicine. A detailed understanding of their interactions with proteins is fundamentally important for their biomedical applications. Human islet amyloid polypeptide (hIAPP) is an intrinsically disordered protein and its aggregation is associated with type 2 diabetes. Here, we investigated the nano-bio-interactions of fullerenol with hIAPP and focused on the effect of C60(OH)24 on hIAPP aggregation by replica-exchange molecular dynamic simulations. Our simulations show that isolated hIAPP dimers transiently populated amyloid-precursor (β-hairpin) containing β-sheet structure, whereas C60(OH)24 completely suppressed this fibril-prone structure, thus inhibiting hIAPP aggregation. The simulation-predicted inhibitory effect of fullerenols was validated by atom force microscopy and thioflavin T fluorescence experiments. We find C60(OH)24 binds to hIAPP via hydrogen bonding interactions with polar residues T9, Q10, N14, N21, N22, N31, N35 and T36 as well as the collective van der Waals and hydrogen-bonding interaction with Y37. Molecular dynamic simulations show that C60(OH)24 destabilized the hIAPP protofibril by mostly binding to the 20SNNFGAILSS29 amyloid core region. This study not only helps to understand the mechanisms involved in hIAPP aggregation and amyloid inhibition, but also provides new clues for the development of therapeutic candidates against type 2 diabetes.
富勒醇在纳米技术和生物医药领域引起了极大的科学兴趣。深入了解它们与蛋白质的相互作用对于它们在生物医药中的应用至关重要。人胰岛淀粉样多肽(hIAPP)是一种无规卷曲的蛋白质,其聚集与 2 型糖尿病有关。在这里,我们研究了富勒醇与 hIAPP 的纳米生物相互作用,并专注于 C60(OH)24 对 hIAPP 聚集的影响,通过复制交换分子动力学模拟。我们的模拟表明,孤立的 hIAPP 二聚体瞬时存在含有β-发夹的淀粉前体(β-发夹)结构,而 C60(OH)24 完全抑制了这种纤维倾向结构,从而抑制了 hIAPP 的聚集。原子力显微镜和硫黄素 T 荧光实验验证了模拟预测的富勒醇的抑制作用。我们发现 C60(OH)24 通过与 T9、Q10、N14、N21、N22、N31、N35 和 T36 等极性残基以及与 Y37 的集体范德华和氢键相互作用与 hIAPP 结合。分子动力学模拟表明,C60(OH)24 通过主要与 20SNNFGAILSS29 淀粉样核心区域结合,使 hIAPP 原纤维不稳定。这项研究不仅有助于了解 hIAPP 聚集和淀粉样抑制的机制,而且为开发 2 型糖尿病治疗候选药物提供了新的线索。