Suppr超能文献

情感变异性和可预测性:使用递归定量分析更好地理解情感动态与健康的关系。

Affect variability and predictability: Using recurrence quantification analysis to better understand how the dynamics of affect relate to health.

机构信息

Department of Psychology, Chapman University.

Department of Psychological Science, University of California, Irvine.

出版信息

Emotion. 2020 Apr;20(3):391-402. doi: 10.1037/emo0000556. Epub 2019 Feb 4.

Abstract

Changes in affect over time have been associated with health outcomes. However, previously utilized measurement methods focus on variability of affect (e.g., standard deviation, root mean squared successive difference) and ignore the more complex temporal patterns of affect over time. These patterns may be an important feature in understanding how the dynamics of affect relate to health. Recurrence quantification analysis (RQA) may help alleviate this problem by assessing temporal characteristics unassessed by past methods. RQA metrics, such as determinism and recurrence, can provide a measure of the predictability of affect over time, indexing how often patterns within affective experiences repeat. In Study 1, we first contrasted RQA metrics with commonly used measures of variability to demonstrate that RQA can further differentiate among patterns of affect. In Study 2, we analyzed the associations between these new metrics and health, namely, depressive and somatic symptoms. We found that RQA metrics predicted health above and beyond mean levels and variability of affect over time. The most desirable health outcomes were observed in people who had high mean positive affect, low mean negative affect, low affect variability, and high affect predictability. These studies are the first to demonstrate the utility of RQA for determining how temporal patterns in affective experiences are important for health outcomes. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

摘要

随着时间的推移,情绪变化与健康结果有关。然而,以前使用的测量方法侧重于情绪的可变性(例如,标准差、均方根连续差异),而忽略了情绪随时间的更复杂的时间模式。这些模式可能是理解情绪动态与健康的关系的一个重要特征。递归定量分析(RQA)可以通过评估过去方法未评估的时间特征来帮助缓解这个问题。RQA 指标,如确定性和复发,可以提供随时间变化的情绪的可预测性的度量,索引情感体验中的模式重复的频率。在研究 1 中,我们首先将 RQA 指标与常用的可变性测量指标进行对比,以证明 RQA 可以进一步区分情绪模式。在研究 2 中,我们分析了这些新指标与健康之间的关联,即抑郁和躯体症状。我们发现,RQA 指标可以预测健康,而不仅仅是随时间变化的情绪的平均水平和可变性。在具有高平均正性情绪、低平均负性情绪、低情绪可变性和高情绪可预测性的人群中观察到最理想的健康结果。这些研究首次证明了 RQA 用于确定情感体验的时间模式对健康结果的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验