Suppr超能文献

解析情感动态,识别情绪和焦虑障碍的风险。

Parsing affective dynamics to identify risk for mood and anxiety disorders.

机构信息

Department of Psychology.

Department of Psychology and California National Primate Research Center, University of California, Davis.

出版信息

Emotion. 2019 Mar;19(2):283-291. doi: 10.1037/emo0000440. Epub 2018 Jun 4.

Abstract

Emotional dysregulation is thought to underlie risk for both anxiety and depressive disorders. However, despite high rates of comorbidity, anxiety and depression are phenotypically different. Apart from nosological differences (e.g., worry for anxiety, low mood for depression), it remains unclear how the emotional dysregulation inherent in individual differences in trait anxiety and depression severity present on a day-to-day basis. One approach that may facilitate addressing these questions is to utilize Ecological Momentary Assessment (EMA) using mobile phones to parse the temporal dynamics of affective experiences into specific parameters. An emerging literature in affective science suggests that risk for anxiety and depressive disorders may be associated with variation in the mean and instability/variability of emotion. Here we examine the extent to which distinct temporal dynamic parameters uniquely predict risk for anxiety versus depression. Over 10 days, 105 individuals rated their current positive and negative affective state several times each day. Using two distinct approaches to statistically assess mean and instability of positive and negative affect, we found that individual differences in trait anxiety was generally associated with increased instability of positive and negative affect whereas mean levels of positive and negative affect were generally associated with individual differences in depression. These data provide evidence that the emotional dysregulation underlying risk for mood versus anxiety disorders unfolds in distinct ways and highlights the utility in examining affective dynamics to understand psychopathology. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

摘要

情绪调节障碍被认为是焦虑和抑郁障碍风险的基础。然而,尽管共病率很高,但焦虑和抑郁在表型上是不同的。除了分类学上的差异(例如,焦虑时担心,抑郁时情绪低落),目前尚不清楚特质焦虑和抑郁严重程度个体差异中固有的情绪调节障碍如何在日常生活中表现出来。一种可能有助于解决这些问题的方法是使用智能手机进行生态瞬时评估(EMA),将情感体验的时间动态细分为特定参数。情感科学中的一个新兴文献表明,焦虑和抑郁障碍的风险可能与情绪的均值和不稳定性/可变性的变化有关。在这里,我们研究了不同的时间动态参数在多大程度上可以独特地预测焦虑与抑郁的风险。在 10 天内,105 名个体每天多次评估自己当前的积极和消极情绪状态。使用两种不同的方法来统计评估积极和消极情绪的均值和不稳定性,我们发现特质焦虑的个体差异通常与积极和消极情绪的不稳定性增加有关,而积极和消极情绪的平均水平通常与抑郁的个体差异有关。这些数据提供了证据,表明心境障碍和焦虑障碍风险相关的情绪调节障碍以不同的方式展开,并强调了检查情感动态以理解精神病理学的实用性。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。

相似文献

5
Exploring behavioral pattern separation and risk for emotional disorders.探索行为模式分离与情绪障碍风险。
J Anxiety Disord. 2018 Oct;59:27-33. doi: 10.1016/j.janxdis.2018.08.006. Epub 2018 Aug 23.
6
Everyday emotional dynamics in major depression.重度抑郁症的日常情绪动态。
Emotion. 2020 Mar;20(2):179-191. doi: 10.1037/emo0000541. Epub 2018 Dec 27.

引用本文的文献

6
Zero-shot personalization of speech foundation models for depressed mood monitoring.用于抑郁情绪监测的语音基础模型的零样本个性化
Patterns (N Y). 2023 Nov 1;4(11):100873. doi: 10.1016/j.patter.2023.100873. eCollection 2023 Nov 10.

本文引用的文献

2
Affective Dynamics in Psychopathology.精神病理学中的情感动力学
Emot Rev. 2015 Oct;7(4):355-361. doi: 10.1177/1754073915590617. Epub 2015 Jul 9.
3
Rethinking Rumination.重新思考沉思。
Perspect Psychol Sci. 2008 Sep;3(5):400-24. doi: 10.1111/j.1745-6924.2008.00088.x.
7
Critical slowing down as early warning for the onset and termination of depression.临界减速可作为抑郁发作和终止的早期预警。
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):87-92. doi: 10.1073/pnas.1312114110. Epub 2013 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验