Bolstad Andrew, Van Veen Barry D, Nowak Robert
MIT Lincoln Laboratory, Lexington, MA 02420-9108 USA.
IEEE Trans Signal Process. 2011 Jun 11;59(6):2628-2641. doi: 10.1109/TSP.2011.2129515.
This paper addresses the problem of inferring sparse causal networks modeled by multivariate autoregressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a "false connection score" ψ. In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that ψ < 1. The false connection score is also demonstrated to be a useful metric of recovery in nonasymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach.
本文探讨了由多元自回归(MAR)过程建模的稀疏因果网络的推断问题。推导了在何种条件下,组套索(gLasso)程序能够一致地估计稀疏网络结构。关键条件涉及一个“错误连接分数”ψ。特别地,我们表明,即使网络的观测数量远少于描述网络的参数数量,只要ψ < 1,就有可能实现一致恢复。错误连接分数在非渐近情况下也被证明是恢复的一个有用指标。这些条件提示了一种改进的gLasso程序,它倾向于提高错误连接分数并减少因果影响方向反转的可能性。计算实验和基于真实网络的脑电皮层电图(ECoG)模拟研究证明了该方法的有效性。