Suppr超能文献

基于组稀疏正则化的因果网络推理

Causal Network Inference Via Group Sparse Regularization.

作者信息

Bolstad Andrew, Van Veen Barry D, Nowak Robert

机构信息

MIT Lincoln Laboratory, Lexington, MA 02420-9108 USA.

出版信息

IEEE Trans Signal Process. 2011 Jun 11;59(6):2628-2641. doi: 10.1109/TSP.2011.2129515.

Abstract

This paper addresses the problem of inferring sparse causal networks modeled by multivariate autoregressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a "false connection score" ψ. In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that ψ < 1. The false connection score is also demonstrated to be a useful metric of recovery in nonasymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach.

摘要

本文探讨了由多元自回归(MAR)过程建模的稀疏因果网络的推断问题。推导了在何种条件下,组套索(gLasso)程序能够一致地估计稀疏网络结构。关键条件涉及一个“错误连接分数”ψ。特别地,我们表明,即使网络的观测数量远少于描述网络的参数数量,只要ψ < 1,就有可能实现一致恢复。错误连接分数在非渐近情况下也被证明是恢复的一个有用指标。这些条件提示了一种改进的gLasso程序,它倾向于提高错误连接分数并减少因果影响方向反转的可能性。计算实验和基于真实网络的脑电皮层电图(ECoG)模拟研究证明了该方法的有效性。

相似文献

1
Causal Network Inference Via Group Sparse Regularization.基于组稀疏正则化的因果网络推理
IEEE Trans Signal Process. 2011 Jun 11;59(6):2628-2641. doi: 10.1109/TSP.2011.2129515.
3
Stability of building gene regulatory networks with sparse autoregressive models.使用稀疏自回归模型构建基因调控网络的稳定性。
BMC Bioinformatics. 2011;12 Suppl 13(Suppl 13):S17. doi: 10.1186/1471-2105-12-S13-S17. Epub 2011 Nov 30.
4
On Nonregularized Estimation of Psychological Networks.非正则化心理网络估计。
Multivariate Behav Res. 2019 Sep-Oct;54(5):719-750. doi: 10.1080/00273171.2019.1575716. Epub 2019 Apr 8.
7
The graphical lasso: New insights and alternatives.图形套索:新见解与替代方法。
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.
8
A Projection Neural Network for the Generalized Lasso.广义套索的投影神经网络。
IEEE Trans Neural Netw Learn Syst. 2020 Jun;31(6):2217-2221. doi: 10.1109/TNNLS.2019.2927282. Epub 2019 Aug 7.
9
Inference of compressed Potts graphical models.压缩Potts图形模型的推断
Phys Rev E. 2020 Jan;101(1-1):012309. doi: 10.1103/PhysRevE.101.012309.

引用本文的文献

5
Graph-based Learning under Perturbations via Total Least-Squares.基于总最小二乘法的扰动下基于图的学习
IEEE Trans Signal Process. 2020;68:2870-2882. doi: 10.1109/tsp.2020.2982833. Epub 2020 Mar 23.

本文引用的文献

1
Modeling sparse connectivity between underlying brain sources for EEG/MEG.对 EEG/MEG 的潜在脑源之间的稀疏连通性进行建模。
IEEE Trans Biomed Eng. 2010 Aug;57(8):1954-63. doi: 10.1109/TBME.2010.2046325. Epub 2010 May 18.
3
Space-time event sparse penalization for magneto-/electroencephalography.用于脑磁图/脑电图的时空事件稀疏惩罚法
Neuroimage. 2009 Jul 15;46(4):1066-81. doi: 10.1016/j.neuroimage.2009.01.056. Epub 2009 Feb 6.
5
A distributed spatio-temporal EEG/MEG inverse solver.一种分布式时空脑电图/脑磁图逆解算器。
Neuroimage. 2009 Feb 1;44(3):932-46. doi: 10.1016/j.neuroimage.2008.05.063. Epub 2008 Jun 14.
8
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
9
Identification and classification of hubs in brain networks.脑网络中枢纽的识别与分类。
PLoS One. 2007 Oct 17;2(10):e1049. doi: 10.1371/journal.pone.0001049.
10
Nonlinear multivariate analysis of neurophysiological signals.神经生理信号的非线性多变量分析
Prog Neurobiol. 2005 Sep-Oct;77(1-2):1-37. doi: 10.1016/j.pneurobio.2005.10.003. Epub 2005 Nov 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验