Suppr超能文献

在微环境中对基因型进行建模以预测单细胞和多细胞行为。

Modeling genotypes in their microenvironment to predict single- and multi-cellular behavior.

作者信息

Voukantsis Dimitrios, Kahn Kenneth, Hadley Martin, Wilson Rowan, Buffa Francesca M

机构信息

Computational Biology and Integrative Genomics, MRC/CRUK Oxford Institute, Departmemt of Oncology, University of Oxford, Old Road Campus, Oxford, Oxfordshire, OX3 7DQ, UK.

Academic Information Technology Research Team, University of Oxford, 13 Bambury Road, Oxford, Oxfordshire, OX2 6NN, UK.

出版信息

Gigascience. 2019 Mar 1;8(3). doi: 10.1093/gigascience/giz010.

Abstract

A cell's phenotype is the set of observable characteristics resulting from the interaction of the genotype with the surrounding environment, determining cell behavior. Deciphering genotype-phenotype relationships has been crucial to understanding normal and disease biology. Analysis of molecular pathways has provided an invaluable tool to such understanding; however, typically it does not consider the physical microenvironment, which is a key determinant of phenotype. In this study, we present a novel modeling framework that enables the study of the link between genotype, signaling networks, and cell behavior in a three-dimensional microenvironment. To achieve this, we bring together Agent-Based Modeling, a powerful computational modeling technique, and gene networks. This combination allows biological hypotheses to be tested in a controlled stepwise fashion, and it lends itself naturally to model a heterogeneous population of cells acting and evolving in a dynamic microenvironment, which is needed to predict the evolution of complex multi-cellular dynamics. Importantly, this enables modeling co-occurring intrinsic perturbations, such as mutations, and extrinsic perturbations, such as nutrient availability, and their interactions. Using cancer as a model system, we illustrate how this framework delivers a unique opportunity to identify determinants of single-cell behavior, while uncovering emerging properties of multi-cellular growth. This framework is freely available at http://www.microc.org.

摘要

细胞的表型是由基因型与周围环境相互作用产生的一组可观察到的特征,决定着细胞行为。解读基因型与表型的关系对于理解正常生物学和疾病生物学至关重要。分子通路分析为这种理解提供了一个非常有价值的工具;然而,它通常不考虑物理微环境,而物理微环境是表型的关键决定因素。在本研究中,我们提出了一种新颖的建模框架,该框架能够在三维微环境中研究基因型、信号网络和细胞行为之间的联系。为实现这一点,我们将基于主体的建模(一种强大的计算建模技术)与基因网络结合起来。这种结合使得生物学假设能够以可控的逐步方式进行测试,并且它自然适用于对在动态微环境中行动和演化的异质细胞群体进行建模,而这对于预测复杂多细胞动态的演化是必需的。重要的是,这能够对同时发生的内在扰动(如突变)和外在扰动(如营养可用性)及其相互作用进行建模。以癌症作为模型系统,我们说明了这个框架如何提供一个独特的机会来识别单细胞行为的决定因素,同时揭示多细胞生长的新特性。该框架可在http://www.microc.org免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ac/6423375/fd9f67cab6ea/giz010fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验