Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.
J Nutr. 2019 Mar 1;149(3):451-462. doi: 10.1093/jn/nxy272.
Excess dietary fat and sugar are linked to obesity and metabolic syndrome. Polyamines such as spermidine are implicated in fat accumulation and may support activity-induced weight loss.
This study tested interventional spermidine supplementation and voluntary activity against fat- and sucrose-induced systemic and gut microbiota changes.
A 3-factorial study design (3 × 2 × 2) was used to test the factors diet, activity, and spermidine. Male 6-wk-old C57BL/6N mice were fed a control diet (CD; carbohydrate:protein:fat, 70%:20%:10% of energy; 7% sucrose), a high-fat diet (HFD; carbohydrate:protein:fat, 20%:20%:60% of energy; 7% sucrose), or a high-sucrose diet (HSD; carbohydrate:protein:fat, 70%:20%:10% of energy; 35% sucrose). Diet groups were left untreated (+0) or had unlimited access to running wheels (+A) or were supplemented with 3 mM spermidine via drinking water (+S) or a combination of both (+A+S) for 30 wk (n = 7-10).
In comparison to the CD, the HFD enhanced body weights (by 36%, P < 0.001), plasma lipids (cholesterol by 24%, P < 0.001; triglycerides by 27%, P = 0.004), and glucose concentrations (by 18%, P < 0.001), whereas the HSD increased weight by 13% (P < 0.001) and fasting glucose by 17% (P < 0.001) but did not increase plasma lipids. Microbiota taxonomic composition changed upon the HFD and HSD (both P < 0.001); however, only the HSD increased microbial diversity (P < 0.001) compared with the CD. Activity influenced microbiota composition (P < 0.01) and reduced glucose concentrations in HSD-fed (P = 0.021) and HFD-fed (P < 0.001) mice compared with nonactive mice. The combination of activity and spermidine affected energy intake (P-interaction = 0.037) and reduced body weights of HSD+A+S mice compared with HSD+0 mice (P = 0.024).
In male C57BL/6N mice, dietary sucrose and fat caused diverse metabolic and microbiota changes that were differentially susceptible to physical exercise. Spermidine has the potential to augment activity-induced beneficial effects, particularly for sucrose-induced obesity.
过多的膳食脂肪和糖与肥胖和代谢综合征有关。多胺,如亚精胺,与脂肪积累有关,并可能支持活动诱导的体重减轻。
本研究测试了干预性亚精胺补充和自愿活动对脂肪和蔗糖引起的全身和肠道微生物群变化的影响。
采用 3 因素实验设计(3×2×2)来测试饮食、活动和亚精胺这 3 个因素。雄性 6 周龄 C57BL/6N 小鼠喂食对照饮食(CD;碳水化合物:蛋白质:脂肪,能量的 70%:20%:10%;7%蔗糖)、高脂肪饮食(HFD;碳水化合物:蛋白质:脂肪,能量的 20%:20%:60%;7%蔗糖)或高蔗糖饮食(HSD;碳水化合物:蛋白质:脂肪,能量的 70%:20%:10%;35%蔗糖)。饮食组不做处理(+0)或给予无限量的跑步轮(+A)或通过饮用水补充 3 mM 亚精胺(+S)或两者结合(+A+S)30 周(n=7-10)。
与 CD 相比,HFD 增加了体重(增加 36%,P<0.001)、血浆脂质(胆固醇增加 24%,P<0.001;甘油三酯增加 27%,P=0.004)和葡萄糖浓度(增加 18%,P<0.001),而 HSD 增加了 13%的体重(P<0.001)和 17%的空腹血糖(P<0.001),但没有增加血浆脂质。HFD 和 HSD 改变了微生物群落组成(均 P<0.001);然而,只有 HSD 增加了微生物多样性(P<0.001)与 CD 相比。活动影响微生物群落组成(P<0.01)并降低了 HSD 喂养(P=0.021)和 HFD 喂养(P<0.001)小鼠的血糖浓度与非活动小鼠相比。活动和亚精胺的组合影响能量摄入(P 交互=0.037),并降低 HSD+A+S 小鼠的体重与 HSD+0 小鼠相比(P=0.024)。
在雄性 C57BL/6N 小鼠中,饮食中的蔗糖和脂肪导致了不同的代谢和微生物群变化,这些变化对体力活动有不同的敏感性。亚精胺有可能增强活动诱导的有益效果,特别是对蔗糖引起的肥胖。