Suppr超能文献

具有学习功能的尖峰神经网络系统。

Spiking Neural P Systems With Learning Functions.

出版信息

IEEE Trans Nanobioscience. 2019 Apr;18(2):176-190. doi: 10.1109/TNB.2019.2896981. Epub 2019 Feb 1.

Abstract

Spiking neural P systems (SN P systems) are a class of distributed and parallel neural-like computing models, inspired from the way neurons communicate by means of spikes. In this paper, a new variant of the systems, called SN P systems with learning functions, is introduced. Such systems can dynamically strengthen and weaken connections among neurons during the computation. A class of specific SN P systems with simple Hebbian learning function is constructed to recognize English letters. The experimental results show that the SN P systems achieve average accuracy rate 98.76% in the test case without noise. In the test cases with low, medium, and high noises, the SN P systems outperform back propagation neural networks and probabilistic neural networks. Moreover, comparing with spiking neural networks, SN P systems perform a little better in recognizing letters with noise. The result of this paper is promising in terms of the fact that it is the first attempt to use SN P systems in pattern recognition after many theoretical advancements of SN P systems, and SN P systems exhibit the feasibility for tackling pattern recognition problems.

摘要

尖峰神经网络系统 (Spiking Neural P Systems, SN P systems) 是一类分布式、并行的类神经计算模型,灵感来源于神经元通过尖峰进行通信的方式。在本文中,引入了一种新型的系统,称为具有学习功能的尖峰神经网络系统。在计算过程中,这些系统可以动态地增强或减弱神经元之间的连接。构建了一类具有简单赫布学习功能的特定尖峰神经网络系统,用于识别英文字母。实验结果表明,在无噪声的测试案例中,SN P 系统的平均准确率达到 98.76%。在低、中、高噪声测试案例中,SN P 系统的表现优于反向传播神经网络和概率神经网络。此外,与尖峰神经网络相比,SN P 系统在识别带噪声的字母方面表现稍好。在尖峰神经网络系统在经历了许多理论上的发展之后,首次尝试将其应用于模式识别,并且 SN P 系统表现出了处理模式识别问题的可行性,这一结果具有很大的发展潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验