Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia.
School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, New South Wales, Australia.
J Neurochem. 2019 Jul;150(1):88-106. doi: 10.1111/jnc.14676. Epub 2019 Mar 28.
Treatment with the dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (l-DOPA) provides symptomatic relief arising from DA denervation in Parkinson's disease. Mounting evidence that DA autooxidation to neurotoxic quinones is involved in Parkinson's disease pathogenesis has raised concern about potentiation of oxidative stress by l-DOPA. The rate of DA quinone formation increases in the presence of excess redox-active iron (Fe), which is a pathological hallmark of Parkinson's disease. Conversely, l-DOPA has pH-dependent Fe-chelating properties, and may act to 'redox silence' Fe and partially allay DA autoxidation. We examined the effects of l-DOPA in three murine models of parkinsonian neurodegeneration: early-life Fe overexposure in wild-type mice, transgenic human (h)A53T mutant α-synuclein (α-syn) over-expression, and a combined 'multi-hit' model of Fe-overload in hA53T mice. We found that l-DOPA was neuroprotective and prevented age-related Fe accumulation in the substantia nigra pars compacta (SNc), similar to the mild-affinity Fe chelator clioquinol. Chronic l-DOPA treatment showed no evidence of increased oxidative stress in wild-type midbrain and normalized motor performance, when excess Fe was present. Similarly, l-DOPA also did not exacerbate protein oxidation levels in hA53T mice, with or without excess nigral Fe, and showed evidence of neuroprotection. The effects of l-DOPA in Fe-fed hA53T mice were somewhat muted, suggesting that Fe-chelation alone is insufficient to attenuate neuron loss in an animal model also recapitulating altered DA metabolism. In summary, we found no evidence in any of our model systems that l-DOPA treatment accentuated neurodegeneration, suggesting DA replacement therapy does not contribute to oxidative stress in the Parkinson's disease brain.
用多巴胺(DA)前体 l-3,4-二羟基苯丙氨酸(l-DOPA)治疗可以缓解帕金森病中 DA 去神经引起的症状。越来越多的证据表明,DA 自动氧化为神经毒性醌与帕金森病的发病机制有关,这引起了人们对 l-DOPA 增强氧化应激的担忧。在过量的氧化还原活性铁(Fe)存在下,DA 醌的形成速率增加,这是帕金森病的病理标志。相反,l-DOPA 具有 pH 依赖性的 Fe 螯合特性,可能起到“还原沉默”Fe 的作用,并部分缓解 DA 的自动氧化。我们在三种帕金森病神经退行性变的小鼠模型中研究了 l-DOPA 的作用:野生型小鼠早期 Fe 过度暴露、转人(h)A53T 突变α-突触核蛋白(α-syn)过表达,以及 hA53T 小鼠的 Fe 超负荷“多打击”模型。我们发现,l-DOPA 具有神经保护作用,可以防止年龄相关的 SNc 中铁的积累,类似于低亲和力的 Fe 螯合剂氯喹啉。慢性 l-DOPA 治疗在存在过量 Fe 时,在野生型中脑没有显示出增加氧化应激的证据,并且可以改善运动表现。同样,l-DOPA 也没有加重 hA53T 小鼠的蛋白质氧化水平,无论是否存在过量的黑质 Fe,并且表现出神经保护作用。在 Fe 喂养的 hA53T 小鼠中,l-DOPA 的作用有些减弱,这表明仅螯合 Fe 不足以减轻动物模型中神经元丢失,该模型还再现了改变的 DA 代谢。总之,我们在任何模型系统中都没有发现 l-DOPA 治疗加重神经退行性变的证据,这表明 DA 替代治疗不会导致帕金森病大脑中的氧化应激。