The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
Mol Immunol. 2019 Mar;107:115-122. doi: 10.1016/j.molimm.2019.01.016. Epub 2019 Feb 1.
Rhodanese homology domains (RHODs) are the structural modules of ubiquitous tertiary that occur in three major evolutionary phyla. Despite the versatile and important physiological functions of RHODs containing proteins, little is known about their invertebrate counterparts. A novel HSP67B2-like single-domain rhodanese homologue, MdRDH1 from Musca domestica, whose expression can be induced by bacterial infection or oxidative stress. Silencing MdRDH1 through RNAi causes important accumulations of reactive oxygen species (ROS) and malondialdehyde (MDA), and increases mortality in the larvae treated with bacterial invasion. The E. coli with MdRDH1 and the mutant MdRDH1 are transformed, with significant rhodanese activity of the recombinant protein of MdRDH1 in vitro found, without no detection of enzyme activity of the mutant MdRDH1, revealing that catalytic Cys135 in the active-site loop is essential in the sulfurtransferase activity of MdRDH1. When oxidative stress is insulted by phenazine methosulfate (PMS), the MdRDH1 transformed E. coli shows enhanced survival rates compared with those bacteria transformed with MdRDH1. Our research indicates that MdRDH1 confers oxidative stress tolerance, thus rendering evidence for the idea that rhodanese family genes play a critical role in antioxidant defenses. This paper yields novel insights into the potential antioxidative and immune functions of HSP67B2-like rhodanese homologues in invertebrate.
硫氰酸酶同源结构域(RHODs)是普遍存在的三级结构模块,存在于三个主要的进化门中。尽管含有 RHODs 的蛋白质具有多功能且重要的生理功能,但对其无脊椎动物对应物知之甚少。一种新型的 HSP67B2 样单结构域硫氰酸酶同源物,来自家蝇的 MdRDH1,其表达可以被细菌感染或氧化应激诱导。通过 RNAi 沉默 MdRDH1 会导致活性氧(ROS)和丙二醛(MDA)的重要积累,并增加幼虫在细菌入侵时的死亡率。用 MdRDH1 和突变型 MdRDH1 转化大肠杆菌,发现 MdRDH1 的重组蛋白在体外具有显著的硫氰酸酶活性,而突变型 MdRDH1 没有检测到酶活性,表明活性位点环中的催化 Cys135 在 MdRDH1 的硫转移酶活性中是必不可少的。当氧化应激受到吩嗪甲磺酸盐(PMS)的侵袭时,与转化为 MdRDH1 的大肠杆菌相比,转化为 MdRDH1 的大肠杆菌表现出更高的存活率。我们的研究表明,MdRDH1 赋予了氧化应激耐受性,从而为硫氰酸酶家族基因在抗氧化防御中发挥关键作用的观点提供了证据。本文为 HSP67B2 样硫氰酸酶同源物在无脊椎动物中的潜在抗氧化和免疫功能提供了新的见解。