The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
Fish Shellfish Immunol. 2017 Nov;70:327-334. doi: 10.1016/j.fsi.2017.09.010. Epub 2017 Sep 4.
In Macrobrachium nipponense, the rhodanese homologue 2 (MnRDH2) gene codes for a single rhodanese domain protein. Considering the lack of information on the biological role of the ubiquitous rhodaneses in invertebrate, we examined the functions of MnRDH2 using both in silico and in vitro approaches. Quantitative PCR analysis of different tissues indicated that expression of MnRDH2 was enriched in hepatopancreas, in which bacterial challenge by Aeromonas hydrophila induced MnRDH2 expression. Knocking down MnRDH2 by RNA interference caused significant accumulations of reactive oxygen species and malondialdehyde (MDA). Using Escherichia coli (DE3), we expressed MnRDH2 and the mutant MnRDH2, in which the predicted catalytic cysteine was mutated to alanine, and found significant rodanese activity of the recombinant MnRDH2 in vitro, but not for the mutant rMnRDH2. We observed that rMnRDH2 was able to significantly increase tolerance of the host bacteria to oxidative stressor phenazine methosulfate. These results suggest that MnRDH2 might have the potential to buffer general levels of oxidants via regulation of redox reactions. In conclusion, our study begins to hint a possible biological functionality of MnRDH2 as a redox switch to activate defensive activities against oxidative damage, which helps host in maintaining the cellular redox balance. These characteristics will facilitate future investigations into the physiological functions for invertebrate rhodanese family genes.
在日本沼虾中,硫代核苷酸酶同源物 2(MnRDH2)基因编码一个单一的硫代核苷酸酶结构域蛋白。考虑到普遍存在的硫代核苷酸酶在无脊椎动物中的生物学作用的信息缺乏,我们使用了计算机模拟和体外方法来研究 MnRDH2 的功能。对不同组织的定量 PCR 分析表明,MnRDH2 的表达在肝胰腺中富集,在肝胰腺中,哈维弧菌的细菌攻击诱导了 MnRDH2 的表达。通过 RNA 干扰敲低 MnRDH2 导致活性氧和丙二醛(MDA)的显著积累。使用大肠杆菌(DE3),我们表达了 MnRDH2 和突变体 MnRDH2,其中预测的催化半胱氨酸突变为丙氨酸,并且发现重组 MnRDH2 在体外具有显著的硫代核苷酸酶活性,但突变体 rMnRDH2 没有。我们观察到 rMnRDH2 能够显著提高宿主细菌对氧化应激剂吩嗪甲硫酸盐的耐受能力。这些结果表明,MnRDH2 可能通过调节氧化还原反应来缓冲氧化剂的一般水平,从而具有潜在的作用。总之,我们的研究开始暗示 MnRDH2 作为一种氧化还原开关的可能生物学功能,以激活对氧化损伤的防御活性,这有助于宿主维持细胞氧化还原平衡。这些特性将促进对无脊椎动物硫代核苷酸酶家族基因的生理功能的未来研究。