Suppr超能文献

评论:基于注册登记的随机对照试验中的患者选择水平

Commentary: On the levels of patient selection in registry-based randomized controlled trials.

作者信息

Lasch Florian, Weber Kristina, Koch Armin

机构信息

Department of Biostatistics, Hannover Medical School, Carl-Neuberg Strasse 1, 30165, Hannover, Germany.

F. Hoffmann-La Roche AG, MDBD, Bldg 663, Hochstrasse, CH-4070, Basel, Switzerland.

出版信息

Trials. 2019 Feb 4;20(1):100. doi: 10.1186/s13063-019-3214-x.

Abstract

Registry-based randomized controlled trials (RCTs) are presumed to include a less-selected patient population and thus to have enhanced generalizability compared to conventional RCTs. However, this view disregards the levels of patient selection in registry-based RCTs: the registry selection level and the trial selection level. At both levels, systematic selection can occur and generalizability can be diminished. Nevertheless, using a registry as a basis for recruitment, randomization, and data collection results in an advantage: the trial selection takes place within the registry framework, where baseline characteristics of non-enrolled patients are automatically documented as well. By comparing the baseline variables of the enrolled and non-enrolled patients, the trial selection can always be investigated, which gives a sound basis for discussing the generalizability to the registry population.

摘要

基于注册登记的随机对照试验(RCT)被认为纳入的患者群体选择偏倚较小,因此与传统RCT相比具有更强的普遍性。然而,这种观点忽视了基于注册登记的RCT中患者选择的层面:注册登记选择层面和试验选择层面。在这两个层面都可能发生系统性选择,普遍性可能会降低。尽管如此,以注册登记为基础进行招募、随机分组和数据收集仍有一个优势:试验选择是在注册登记框架内进行的,未入选患者的基线特征也会自动记录下来。通过比较入选患者和未入选患者的基线变量,总能对试验选择进行研究,这为讨论该试验对注册登记人群的普遍性提供了可靠依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验