Suppr超能文献

逆向模型:医学研究中的一种新方法。

REVERSE model: a novel approach in medical research.

作者信息

Saba Luca, De Rubeis Gianluca, Pisu Francesco

机构信息

Department of Medical Imaging, Azienda Ospedaliero Universitaria (A.O.U.) of Cagliari-Polo Di Monserrato,, University of Cagliari, Cagliari, Italy.

Department of Diagnostic UOC of Diagnostic and Interventional Neuroradiology, San Camillo-Forlanini Hospital, Rome, Italy.

出版信息

Trials. 2025 Jul 18;26(1):248. doi: 10.1186/s13063-025-08974-9.

Abstract

BACKGROUND

Randomized controlled trials are considered the gold standard but they are limited by high costs and external validity. The REVERSE model is introduced to address these challenges.

METHODS

The REVERSE model encompasses two sequential phases. First, in the data mining phase, compatible datasets are identified and merged by using matching or stricter inclusion/exclusion criteria, thereby reducing selection bias. Second, a randomization phase addresses the inherent biases of the selected datasets. For a dichotomous scenario, the data are organized into four sub-cohorts according to the concordance with the original and new assignments: two concordant and two non-concordant. New decision factors are tested in concordant groups. Patients in non-concordant cohorts were excluded. ROMICAT-II was used to reproduce the findings from both the ROMICAT-II and ROMICAT-I trials, with results reported as the median of 10,000 applications.

FINDINGS

The REVERSE model successfully replicated the results of ROMICAT-II and ROMICAT-I using only ROMICAT-II data. For ROMICAT-II, the median (interquartile range) of all median differences between length of hospitalization stay with cardiac computed tomography angiography (CCTA) and standard diagnostic strategy after 10,000 applications matched the trial's findings 100% of the time (18.06 h [17.76-18.32] vs. 18.1 h; p < 0.05). For ROMICAT-I, median of all REVERSE plaque prevalence (PP) at CCTA matched the observed PP at CCTA from ROMICAT-I (49.63% [48.2-51.2] vs. 49.7%). The REVERSE PP fell within 49.63% ± 5% in 9733 (97.33%) applications.

CONCLUSION

The REVERSE model allows repurposing existing datasets to explore novel research questions while mitigating inherent biases through stringent inclusion criteria matching and randomization.

摘要

背景

随机对照试验被视为金标准,但受高成本和外部有效性的限制。引入REVERSE模型以应对这些挑战。

方法

REVERSE模型包括两个连续阶段。首先,在数据挖掘阶段,通过使用匹配或更严格的纳入/排除标准来识别和合并兼容数据集,从而减少选择偏倚。其次,随机化阶段解决所选数据集的固有偏倚。对于二分情况,根据与原始和新分配的一致性将数据组织成四个亚队列:两个一致和两个不一致。在一致组中测试新的决策因素。排除不一致队列中的患者。使用ROMICAT-II重现ROMICAT-II和ROMICAT-I试验的结果,结果报告为10000次应用的中位数。

结果

REVERSE模型仅使用ROMICAT-II数据成功复制了ROMICAT-II和ROMICAT-I的结果。对于ROMICAT-II,在10000次应用后,心脏计算机断层扫描血管造影(CCTA)住院时间与标准诊断策略之间所有中位数差异的中位数(四分位间距)100%与试验结果匹配(18.06小时[17.76 - 18.32]对18.1小时;p < 0.05)。对于ROMICAT-I,CCTA时所有REVERSE斑块患病率(PP)的中位数与ROMICAT-I中CCTA观察到的PP匹配(49.63%[48.2 - 51.2]对49.7%)。在9733次(97.33%)应用中,REVERSE PP落在49.63%±5%范围内。

结论

REVERSE模型允许重新利用现有数据集来探索新的研究问题,同时通过严格的纳入标准匹配和随机化减轻固有偏倚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验