Suppr超能文献

基于 SEER 肿瘤登记和病历回顾利用行政数据验证多发性骨髓瘤算法。

Validating an algorithm for multiple myeloma based on administrative data using a SEER tumor registry and medical record review.

机构信息

Global Drug Safety and Risk Management, Celgene Corporation, Summit, New Jersey, USA.

IQVIA, New York, New York, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2019 Feb;28(2):256-263. doi: 10.1002/pds.4711. Epub 2019 Feb 4.

Abstract

PURPOSE

Large numbers of multiple myeloma patients can be studied in real-world clinical settings using administrative databases. The validity of these studies is contingent upon accurate case identification. Our objective was to develop and evaluate algorithms to use with administrative data to identify multiple myeloma cases.

METHODS

Patients aged ≥18 years with ≥1 International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) code for multiple myeloma (203.0x) were identified at two study sites. At site 1, several algorithms were developed and validated by comparing results to tumor registry cases. An algorithm with a reasonable positive predictive value (PPV) (0.81) and sensitivity (0.73) was selected and then validated at site 2 where results were compared with medical chart data. The algorithm required that ICD-9-CM codes 203.0x occur before and after the diagnostic procedure codes for multiple myeloma.

RESULTS

At site 1, we identified 1432 patients. The PPVs of algorithms tested ranged from 0.54 to 0.88. Sensitivities ranged from 0.30 to 0.88. At site 2, a random sample (n = 400) was selected from 3866 patients, and medical charts were reviewed by a clinician for 105 patients. Algorithm PPV was 0.86 (95% CI, 0.79-0.92).

CONCLUSIONS

We identified cases of multiple myeloma with adequate validity for claims database analyses. At least two ICD-9-CM diagnosis codes 203.0x preceding diagnostic procedure codes for multiple myeloma followed by ICD-9-CM codes within a specific time window after diagnostic procedure codes were required to achieve reasonable algorithm performance.

摘要

目的

利用行政数据库可在真实临床环境中研究大量多发性骨髓瘤患者。这些研究的有效性取决于准确的病例识别。我们的目的是开发和评估用于识别多发性骨髓瘤病例的行政数据算法。

方法

在两个研究地点,选择年龄≥18 岁且有≥1 个国际疾病分类第 9 版临床修订版(ICD-9-CM)多发性骨髓瘤编码(203.0x)的患者。在地点 1,通过比较肿瘤登记处病例的结果,开发和验证了几种算法。选择一种具有合理阳性预测值(PPV)(0.81)和敏感性(0.73)的算法,然后在地点 2 进行验证,将结果与病历数据进行比较。该算法要求 ICD-9-CM 编码 203.0x 在多发性骨髓瘤诊断程序代码之前和之后发生。

结果

在地点 1,我们确定了 1432 名患者。所测试算法的 PPV 范围为 0.54 至 0.88。敏感性范围为 0.30 至 0.88。在地点 2,从 3866 名患者中随机抽取 400 名患者的随机样本,并由临床医生对 105 名患者的病历进行了审查。算法的 PPV 为 0.86(95%CI,0.79-0.92)。

结论

我们确定了多发性骨髓瘤病例,其有效性足以进行索赔数据库分析。需要至少有两个 ICD-9-CM 诊断编码 203.0x 在多发性骨髓瘤诊断程序代码之前,随后在诊断程序代码之后特定时间窗口内有 ICD-9-CM 编码,以实现合理的算法性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验