Liu Chuangwei, Li Qinye, Wu Chengzhang, Zhang Jie, Jin Yonggang, MacFarlane Douglas R, Sun Chenghua
School of Chemistry, Faculty of Science , Monash University , Clayton , Victoria 3800 , Australia.
School of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia.
J Am Chem Soc. 2019 Feb 20;141(7):2884-2888. doi: 10.1021/jacs.8b13165. Epub 2019 Feb 6.
Boron has been explored as p-block catalysts for nitrogen reduction reaction (NRR) by density functional theory. Unlike transition metals, on which the active centers need empty d orbitals to accept the lone-pair electrons of the nitrogen molecule, the sp hybrid orbital of the boron atom can form B-to-N π-back bonding. This results in the population of the N-N π* orbital and the concomitant decrease of the N-N bond order. We demonstrate that the catalytic activity of boron is highly correlated with the degree of charge transfer between the boron atom and the substrate. Among the 21 concept-catalysts, single boron atoms supported on graphene and substituted into h-MoS are identified as the most promising NRR catalysts, offering excellent energy efficiency and selectivity against hydrogen evolution reaction.
通过密度泛函理论,硼已被探索用作氮还原反应(NRR)的p区催化剂。与过渡金属不同,过渡金属的活性中心需要空的d轨道来接受氮分子的孤对电子,而硼原子的sp杂化轨道可以形成从硼到氮的π反馈键。这导致N-N π*轨道的电子占据增加以及N-N键级随之降低。我们证明硼的催化活性与硼原子和底物之间的电荷转移程度高度相关。在21种概念催化剂中,负载在石墨烯上并取代h-MoS中的单硼原子被确定为最有前景的NRR催化剂,具有出色的能量效率和对析氢反应的选择性。