Suppr超能文献

优化晶格氮配位以突破金属氮化物电催化氮还原的性能限制

Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction.

作者信息

Yuan Haiyang, Zhu Chen, Hou Yu, Yang Hua Gui, Wang Haifeng

机构信息

Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

JACS Au. 2024 Aug 15;4(8):3038-3048. doi: 10.1021/jacsau.4c00377. eCollection 2024 Aug 26.

Abstract

Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (N) and the unique ability of N vacancies to activate N. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH via the reductive decomposition of N without N activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which N plays a pivotal role in achieving the Volmer process and N activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of N vacancy ( ) can achieve maximum activity and maintain electrochemical stability, while low- or high- ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of N on rocksalt-type MN(100), this maximum activity is limited to a yield of NH of only ∼10 mol s cm. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of N and show that the four-coordinate N can exhibit optimal activity and overcome the performance limitation, while less coordinated N fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.

摘要

金属氮化物(MNs)因其丰富的晶格氮(N)以及N空位激活N的独特能力,在电催化氮还原反应(NRR)中引起了广泛关注。然而,在原位电化学条件下,MNs对NRR是否具有催化活性,或者是否通过未激活N的N的还原分解产生NH₃,一直存在争议,更不用说高性能MN催化剂的合理设计了。在此,我们聚焦于常见的岩盐型MN(100)催化剂,并基于第一性原理微观动力学模拟建立了一个定量理论框架来解决这些难题。结果表明,Mars-van Krevelen机制在动力学上更有利于在大多数MNs上驱动NRR,其中N在实现Volmer过程和N激活中起关键作用。在稳定性、活性和选择性方面,我们发现具有适中N空位形成能( )的MN(100)可以实现最大活性并保持电化学稳定性,而低或高 的MN(100)要么不稳定,要么催化活性较低。不幸的是,由于岩盐型MN(100)上N的五配位结构特征,这种最大活性仅限于NH₃产率仅约为10⁻¹⁰ mol s⁻¹ cm⁻²。有趣的是,我们确定了N的局部结构特征的火山型活性调节作用,并表明四配位N可以表现出最佳活性并克服性能限制,而配位较少的N则不行。这项工作首次对MNs在NRR中的活性和稳定性悖论提供了深入的理论见解,并强调了与普遍的简单热力学分析相比反应动力学评估的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d872/11350572/63db4bd3eaec/au4c00377_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验