Suppr超能文献

通过熔融石墨烯氮化硼纳米片插层实现可调多功能陶瓷复合材料。

Tunable, Multifunctional Ceramic Composites via Intercalation of Fused Graphene Boron Nitride Nanosheets.

机构信息

School of Civil Engineering , Iran University of Science and Technology , Tehran , Iran.

Department of Civil Engineering , Monash University Melbourne , Clayton , Victoria 3800 , Australia.

出版信息

ACS Appl Mater Interfaces. 2019 Feb 27;11(8):8635-8644. doi: 10.1021/acsami.8b19409. Epub 2019 Feb 15.

Abstract

Ternary two-dimensional (2D) materials such as fused graphene-boron nitride (GBN) nanosheets exhibit attractive physical and tunable properties far beyond their parent structures. Although these features impart several multifunctional properties in various matrices, a fundamental understanding on the nature of the interfacial interactions of these ternary 2D materials with host matrices and the role of their individual components has been elusive. Herein, we focus on intercalated GBN/ceramic composites as a model system and perform a series of density functional theory calculations to fill this knowledge gap. Propelled by more polarity and negative Gibbs free energy, our results demonstrate that GBN is more water-soluble than graphene and hexagonal boron nitride (h-BN), making it a preferred choice for slurry preparation and resultant intercalations. Further, a chief attribute of the intercalated GBN/ceramic is the formation of covalent C-O and B-O bonds between the two structures, changing the hybridization of GBN from sp to sp. This change, combined with the electron release in the vicinity of the interfacial regions, leads to several nonintuitive mechanical and electrical alterations of the composite such as exhibiting higher young's modulus, strength, and ductility as well as sharp decline in the band gap. As a limiting case, though both tobermorite ceramic and h-BN are wide band gap materials, their intercalated composite becomes a p-type semiconductor, contrary to intuition. These multifunctional features, along with our fundamental electronic descriptions of the origin of property change, provide key guidelines for synthesizing next generation of multifunctional bilayer ceramics with remarkable properties on demand.

摘要

三元二维(2D)材料,如融合的石墨烯-氮化硼(GBN)纳米片,具有吸引人的物理性质和可调谐性质,远远超出了其母体结构。尽管这些特性在各种基质中赋予了多种多功能特性,但对这些三元 2D 材料与基质的界面相互作用的本质及其各组分的作用仍缺乏基本的了解。在这里,我们专注于插层 GBN/陶瓷复合材料作为模型系统,并进行了一系列密度泛函理论计算,以填补这一知识空白。受更多极性和负吉布斯自由能的推动,我们的结果表明,GBN 比石墨烯和六方氮化硼(h-BN)更易溶于水,使其成为浆料制备和插层的首选。此外,插层 GBN/陶瓷的主要特性是两种结构之间形成共价 C-O 和 B-O 键,使 GBN 的杂化从 sp 变为 sp。这种变化,再加上界面区域附近电子的释放,导致复合材料发生了一些非直观的机械和电学变化,例如表现出更高的杨氏模量、强度和延展性,以及带隙的急剧下降。作为一个限制情况,尽管托贝莫来石陶瓷和 h-BN 都是宽带隙材料,但它们的插层复合材料成为 p 型半导体,与直觉相反。这些多功能特性,以及我们对性质变化起源的基本电子描述,为按需合成具有显著性能的新一代多功能双层陶瓷提供了关键指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验