Lash Miller Chemical Labs , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada.
Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California 90095-1569 , United States.
ACS Appl Mater Interfaces. 2019 Feb 20;11(7):7174-7183. doi: 10.1021/acsami.8b18795. Epub 2019 Feb 5.
Understanding self-assembly behavior and resulting morphologies in block co-polymer films is an essential aspect of chemistry and materials science. Although the self-assembly of amorphous coil-coil block co-polymers is relatively well understood, that of semicrystalline block co-polymers where each block has distinct crystallization properties remains unclear. Here, we report a detailed study to elucidate the rich self-assembly behavior of conjugated thiophene-selenophene (P3AT- b-P3AS) block co-polymers. Using a combination of microscopy and synchrotron-based X-ray techniques, we show that three different film morphologies, denoted as lamellae, co-crystallized fibers, and patchy fibers, arise from the self-assembly of these block co-polymers over a relatively narrow range of overall degrees of polymerization (30 < N < 90). Crystallization-driven phase separation occurs at a very low N (<35), and lamellar films are formed. Conversely, at medium N (50-60) and high N (>80), the thiophene and selenophene blocks co-crystallize into nanofibers, where medium N leads to much more mixing than high N. The overall tendency for phase separation in these systems follows rather different trends than phase separation in amorphous polymers in that we observe the greatest degree of phase separation at the lowest N. Finally, we demonstrate how each morphology influences transport properties in organic thin-film transistors comprised of these conjugated polymers.
理解嵌段共聚物薄膜中的自组装行为和由此产生的形态是化学和材料科学的一个重要方面。虽然无定形的螺旋-螺旋嵌段共聚物的自组装相对较好理解,但每个嵌段都具有独特结晶性质的半结晶嵌段共聚物的自组装仍然不清楚。在这里,我们报告了一项详细的研究,以阐明共轭噻吩-硒吩(P3AT-b-P3AS)嵌段共聚物的丰富自组装行为。我们使用显微镜和基于同步加速器的 X 射线技术相结合,表明这三种不同的薄膜形态,分别表示为层状、共结晶纤维和片状纤维,源自这些嵌段共聚物在相对较窄的总聚合度范围内(30 < N < 90)的自组装。在非常低的 N(<35)下发生结晶驱动的相分离,形成层状薄膜。相反,在中等 N(50-60)和高 N(>80)下,噻吩和硒吩嵌段共结晶成纳米纤维,其中中等 N 比高 N 导致更多的混合。这些体系中相分离的总体趋势与无定形聚合物中的相分离有很大不同,我们观察到在最低 N 下具有最大程度的相分离。最后,我们展示了每种形态如何影响由这些共轭聚合物组成的有机薄膜晶体管中的传输性质。