Institute for Advanced Study and School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
Phys Rev Lett. 2019 Jan 18;122(2):026601. doi: 10.1103/PhysRevLett.122.026601.
Recently, a zero Hall conductance plateau with random domains was experimentally observed in the quantum anomalous Hall (QAH) effect. We study the effects of random domains on the zero Hall plateau in QAH insulators. We find that the structure inversion symmetry determines the scaling property of the zero Hall plateau transition in the QAH systems. In the presence of structure inversion symmetry, the zero Hall plateau state shows a quantum-Hall-type critical point, originating from the two decoupled subsystems with opposite Chern numbers. However, the absence of structure inversion symmetry leads to a mixture between these two subsystems, gives rise to a line of critical points, and dramatically changes the scaling behavior. Hereinto, we predict a Berezinskii-Kosterlitz-Thouless-type transition during the Hall conductance plateau switching in the QAH insulators. Our results are instructive for both theoretic understanding of the zero Hall plateau transition and future transport experiments in the QAH insulators.
最近,在量子反常霍尔(QAH)效应中实验观测到具有随机畴的零 Hall 电导平台。我们研究了随机畴对 QAH 绝缘体中零 Hall 平台的影响。我们发现,结构反转对称性决定了 QAH 系统中零 Hall 平台转变的标度性质。在结构反转对称性存在的情况下,零 Hall 平台状态表现出量子霍尔型临界点,源于具有相反陈数的两个解耦子系统。然而,结构反转对称性的缺失导致这两个子系统之间的混合,产生一系列临界点,并显著改变了标度行为。在此,我们预测在 QAH 绝缘体中的 Hall 电导平台切换过程中会发生 Berezinskii-Kosterlitz-Thouless 型相变。我们的结果对于理解零 Hall 平台转变的理论和未来在 QAH 绝缘体中的输运实验都具有启示意义。