Suppr超能文献

微/纳光纤光学传感器:挑战与展望。

Micro/Nanofibre Optical Sensors: Challenges and Prospects.

机构信息

State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.

出版信息

Sensors (Basel). 2018 Mar 18;18(3):903. doi: 10.3390/s18030903.

Abstract

Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.

摘要

微/纳光纤(MNFs)是直径接近或低于可见光或近红外光真空波长的光纤。由于其波长或亚波长尺度的直径以及芯层和包层之间相对较大的折射率对比度,MNF 可以提供可设计的波导特性,包括光学限制、分数消逝场和表面强度,这对于微纳尺度的光学传感非常有吸引力。特别是,玻璃 MNF 中原子级的表面粗糙度和非凡的几何和材料均匀性所实现的波导低损耗紧密限制的大分数消逝场,是其在实现高灵敏度和多功能性的光学传感方面的最突出优点之一。同时,聚合物 MNF 的介孔基质和小直径使其成为用于快速响应光学传感的功能材料的理想主体光纤。在本教程中,我们首先介绍 MNF 光学和 MNF 光学传感器的基础知识,并回顾该领域的进展和现状。然后,我们在一定程度上讨论了 MNF 传感器的挑战和前景,并为未来的研究提供了一些线索。最后,我们对 MNF 光学传感器进行了简要的展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0536/5876663/a3d8ab9b557f/sensors-18-00903-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验