Zhang Yuhai, Sun Ruijia, Ou Xiangyu, Fu Kaifang, Chen Qiushui, Ding Yuchong, Xu Liang-Jin, Liu Lingmei, Han Yu, Malko Anton V, Liu Xiaogang, Yang Huanghao, Bakr Osman M, Liu Hong, Mohammed Omar F
Institute for Advanced Interdisciplinary Research (iAIR) , University of Jinan , Jinan 250022 , Shandong China.
Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia.
ACS Nano. 2019 Feb 26;13(2):2520-2525. doi: 10.1021/acsnano.8b09484. Epub 2019 Feb 13.
Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr nanosheets of large concentration (up to 150 mg/mL). The CsPbBr colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.
闪烁体能够将电离辐射转化为可见光光子,是医学、安全和商业诊断技术(如X射线成像、核相机和计算机断层扫描)不可或缺的一部分。传统的闪烁体制造通常涉及高温烧结,会产生团聚的粉末或大块晶体,这给器件集成和可加工性带来了重大挑战。另一方面,胶体量子点闪烁体无法浇铸成大多数X射线应用所需厚度的致密固体薄膜。在此,我们报告了一种包含高浓度(高达150 mg/mL)CsPbBr纳米片的胶体闪烁体的室温合成方法。CsPbBr胶体的光产额(约21000光子/兆电子伏)高于市售的Ce:LuAG单晶闪烁体(约18000光子/兆电子伏)。基于这些纳米片的闪烁体在X射线照射下既显示出强烈的辐射发光(RL),又具有长期稳定性。重要的是,这种胶体闪烁体可以很容易地浇铸成均匀无裂纹的大面积薄膜(面积为8.5×8.5厘米),具有高分辨率X射线成像应用所需的厚度。我们展示了这些高质量闪烁薄膜作为手机面板和标准中央处理器芯片的X射线成像屏幕的原型应用。我们的射线照相原型将大面积可加工性与高分辨率以及对树脂和硅等护套材料的强穿透能力结合在一起。我们揭示了这些堆叠的纳米片固体内部的能量转移过程,这是它们卓越闪烁性能的原因。我们的研究结果表明,一种大面积溶液处理的具有稳定高效RL的闪烁体是低成本射线照相和X射线成像应用的一种有前途的方法。