Makowski Michal, Ye Wenzheng, Kowal Dominik, Maddalena Francesco, Mahato Somnath, Amrillah Yudhistira Tirtayasri, Zajac Weronika, Witkowski Marcin Eugeniusz, Drozdowski Konrad Jacek, Dang Cuong, Cybinska Joanna, Drozdowski Winicjusz, Nugroho Ferry Anggoro Ardy, Dujardin Christophe, Wong Liang Jie, Birowosuto Muhammad Danang
Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, 54-066, Poland.
CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288 Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.
Adv Mater. 2025 Jul;37(30):e2417874. doi: 10.1002/adma.202417874. Epub 2025 May 16.
Scintillators convert high-energy radiation into detectable photons and play a crucial role in medical imaging and security applications. The enhancement of scintillator performance through nanophotonics and nanoplasmonics, specifically using the Purcell effect, has shown promise but has so far been limited to ultrathin scintillator films because of the localized nature of this effect. This study introduces a method to expand the application of nanoplasmonic scintillators to the bulk regime. By integrating 100-nm-sized plasmonic spheroid and cuboid nanoparticles with perovskite scintillator nanocrystals, nanoplasmonic scintillators are enabled to function effectively within bulk-scale devices. Power and decay rate enhancements of up to (3.20 ± 0.20) and (4.20 ± 0.31) folds are experimentally demonstrated for plasmonic spheroid and cuboid nanoparticles, respectively, in a 5-mm thick CsPbBr nanocrystal-polymer scintillator at RT. Theoretical modeling also predicts similar enhancements of up to (2.26 ± 0.31) and (3.02 ± 0.69) folds for the same nanoparticle shapes and dimensions. Moreover, a (2.07 ± 0.39) fold increase in light yield under Am γ-excitation is demonstrated. These findings provide a viable pathway for utilizing nanoplasmonics to enhance bulk scintillator devices, advancing radiation detection technology.
闪烁体将高能辐射转换为可检测的光子,在医学成像和安全应用中发挥着关键作用。通过纳米光子学和纳米等离子体技术,特别是利用珀塞尔效应来提高闪烁体性能,已显示出一定前景,但由于该效应的局部性质,迄今为止仅限于超薄闪烁体薄膜。本研究介绍了一种将纳米等离子体闪烁体的应用扩展到块状体系的方法。通过将100纳米大小的等离子体球体和长方体纳米颗粒与钙钛矿闪烁体纳米晶体集成,纳米等离子体闪烁体能够在块状器件中有效发挥作用。在室温下,对于5毫米厚的CsPbBr纳米晶体-聚合物闪烁体中的等离子体球体和长方体纳米颗粒,实验分别证明功率增强高达(3.20±0.20)倍和衰减率增强高达(4.20±0.31)倍。理论建模也预测,对于相同的纳米颗粒形状和尺寸,增强倍数高达(2.26±0.31)倍和(3.02±0.69)倍。此外,在Amγ激发下,光产额提高了(2.07±0.39)倍。这些发现为利用纳米等离子体技术增强块状闪烁体器件、推动辐射检测技术提供了一条可行的途径。