Laboratory for Complex Brain Networks, Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston Salem, NC, USA.
Independent Researcher, Cupertino, CA, USA.
Neuroimage. 2019 Apr 1;189:655-666. doi: 10.1016/j.neuroimage.2019.02.001. Epub 2019 Feb 2.
The sliding window correlation (SWC) analysis is a straightforward and common approach for evaluating dynamic functional connectivity. Despite the fact that sliding window analyses have been long used, there are still considerable technical issues associated with the approach. A great effort has recently been dedicated to investigate the window setting effects on dynamic connectivity estimation. In this direction, tapered windows have been proposed to alleviate the effect of sudden changes associated with the edges of rectangular windows. Nevertheless, the majority of the windows exploited to estimate brain connectivity tend to suppress dynamic correlations, especially those with faster variations over time. Here, we introduced a window named modulated rectangular (mRect) to address the suppressing effect associated with the conventional windows. We provided a frequency domain analysis using simulated time series to investigate how sliding window analysis (using the regular window functions, e.g. rectangular and tapered windows) may lead to unwanted spectral modulations, and then we showed how this issue can be alleviated through the mRect window. Moreover, we created simulated dynamic network data with altering states over time using simulated fMRI time series, to examine the performance of different windows in tracking network states. We quantified the state identification rate of different window functions through the Jaccard index, and observed superior performance of the mRect window compared to the conventional window functions. Overall, the proposed window function provides an approach that improves SWC estimations, and thus the subsequent inferences and interpretations based on the connectivity network analyses.
滑动窗口相关(SWC)分析是评估动态功能连接的一种简单而常见的方法。尽管滑动窗口分析已经使用了很长时间,但该方法仍然存在相当多的技术问题。最近,人们付出了巨大的努力来研究窗口设置对动态连接估计的影响。在这方面,锥形窗口已被提出用于减轻与矩形窗口边缘相关的突然变化的影响。然而,用于估计大脑连接的大多数窗口往往会抑制动态相关性,特别是那些随时间变化更快的相关性。在这里,我们引入了一种名为调制矩形(mRect)的窗口来解决与传统窗口相关的抑制效应。我们使用模拟时间序列进行了频域分析,以研究滑动窗口分析(使用常规窗口函数,例如矩形和锥形窗口)如何可能导致不希望的频谱调制,然后我们展示了如何通过 mRect 窗口来缓解这个问题。此外,我们使用模拟 fMRI 时间序列创建了随时间改变状态的模拟动态网络数据,以检查不同窗口在跟踪网络状态方面的性能。我们通过 Jaccard 指数量化了不同窗口函数的状态识别率,并观察到 mRect 窗口相对于传统窗口函数的性能优势。总的来说,所提出的窗口函数提供了一种改进 SWC 估计的方法,从而改进了基于连接网络分析的后续推断和解释。