Suppr超能文献

滑动窗口相关分析:调制窗口形状以用于静息状态下的动态大脑连接。

Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state.

机构信息

Laboratory for Complex Brain Networks, Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston Salem, NC, USA.

Independent Researcher, Cupertino, CA, USA.

出版信息

Neuroimage. 2019 Apr 1;189:655-666. doi: 10.1016/j.neuroimage.2019.02.001. Epub 2019 Feb 2.

Abstract

The sliding window correlation (SWC) analysis is a straightforward and common approach for evaluating dynamic functional connectivity. Despite the fact that sliding window analyses have been long used, there are still considerable technical issues associated with the approach. A great effort has recently been dedicated to investigate the window setting effects on dynamic connectivity estimation. In this direction, tapered windows have been proposed to alleviate the effect of sudden changes associated with the edges of rectangular windows. Nevertheless, the majority of the windows exploited to estimate brain connectivity tend to suppress dynamic correlations, especially those with faster variations over time. Here, we introduced a window named modulated rectangular (mRect) to address the suppressing effect associated with the conventional windows. We provided a frequency domain analysis using simulated time series to investigate how sliding window analysis (using the regular window functions, e.g. rectangular and tapered windows) may lead to unwanted spectral modulations, and then we showed how this issue can be alleviated through the mRect window. Moreover, we created simulated dynamic network data with altering states over time using simulated fMRI time series, to examine the performance of different windows in tracking network states. We quantified the state identification rate of different window functions through the Jaccard index, and observed superior performance of the mRect window compared to the conventional window functions. Overall, the proposed window function provides an approach that improves SWC estimations, and thus the subsequent inferences and interpretations based on the connectivity network analyses.

摘要

滑动窗口相关(SWC)分析是评估动态功能连接的一种简单而常见的方法。尽管滑动窗口分析已经使用了很长时间,但该方法仍然存在相当多的技术问题。最近,人们付出了巨大的努力来研究窗口设置对动态连接估计的影响。在这方面,锥形窗口已被提出用于减轻与矩形窗口边缘相关的突然变化的影响。然而,用于估计大脑连接的大多数窗口往往会抑制动态相关性,特别是那些随时间变化更快的相关性。在这里,我们引入了一种名为调制矩形(mRect)的窗口来解决与传统窗口相关的抑制效应。我们使用模拟时间序列进行了频域分析,以研究滑动窗口分析(使用常规窗口函数,例如矩形和锥形窗口)如何可能导致不希望的频谱调制,然后我们展示了如何通过 mRect 窗口来缓解这个问题。此外,我们使用模拟 fMRI 时间序列创建了随时间改变状态的模拟动态网络数据,以检查不同窗口在跟踪网络状态方面的性能。我们通过 Jaccard 指数量化了不同窗口函数的状态识别率,并观察到 mRect 窗口相对于传统窗口函数的性能优势。总的来说,所提出的窗口函数提供了一种改进 SWC 估计的方法,从而改进了基于连接网络分析的后续推断和解释。

相似文献

1
Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state.
Neuroimage. 2019 Apr 1;189:655-666. doi: 10.1016/j.neuroimage.2019.02.001. Epub 2019 Feb 2.
2
Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states.
Neuroimage. 2016 Jun;133:111-128. doi: 10.1016/j.neuroimage.2016.02.074. Epub 2016 Mar 4.
3
Effects of motion related outliers in dynamic functional connectivity using the sliding window method.
J Neurosci Methods. 2020 Jan 15;330:108519. doi: 10.1016/j.jneumeth.2019.108519. Epub 2019 Nov 13.
5
An average sliding window correlation method for dynamic functional connectivity.
Hum Brain Mapp. 2019 May;40(7):2089-2103. doi: 10.1002/hbm.24509. Epub 2019 Jan 19.
7
Dynamic effective connectivity in resting state fMRI.
Neuroimage. 2018 Oct 15;180(Pt B):594-608. doi: 10.1016/j.neuroimage.2017.11.033. Epub 2017 Nov 20.
9
Connectivity dynamics from wakefulness to sleep.
Neuroimage. 2020 Oct 15;220:117047. doi: 10.1016/j.neuroimage.2020.117047. Epub 2020 Jun 17.
10
Test-retest reliability of dynamic functional connectivity in resting state fMRI.
Neuroimage. 2018 Dec;183:907-918. doi: 10.1016/j.neuroimage.2018.08.021. Epub 2018 Aug 16.

引用本文的文献

2
Decoding dynamic brain networks in Parkinson's disease with temporal attention.
Sci Rep. 2025 May 29;15(1):18798. doi: 10.1038/s41598-025-01106-y.
4
Functional connectivity in EEG: a multiclass classification approach for disorders of consciousness.
Front Neurosci. 2025 Mar 28;19:1550581. doi: 10.3389/fnins.2025.1550581. eCollection 2025.
5
Stacking models of brain dynamics to improve prediction of subject traits in fMRI.
Imaging Neurosci (Camb). 2024 Aug 20;2:1-22. doi: 10.1162/imag_a_00267. eCollection 2024 Aug 1.
6
DySCo: A general framework for dynamic functional connectivity.
PLoS Comput Biol. 2025 Mar 7;21(3):e1012795. doi: 10.1371/journal.pcbi.1012795. eCollection 2025 Mar.
7
A Statistical Characterization of Dynamic Brain Functional Connectivity.
Hum Brain Mapp. 2025 Feb 1;46(2):e70145. doi: 10.1002/hbm.70145.
8
Neural Determinants of Sedentary Lifestyle in Older Adults: A Brain Network Analysis.
Brain Behav. 2025 Jan;15(1):e70085. doi: 10.1002/brb3.70085.
10
Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain.
Neural Netw. 2025 Mar;183:106974. doi: 10.1016/j.neunet.2024.106974. Epub 2024 Dec 3.

本文引用的文献

1
Dynamic fMRI networks predict success in a behavioral weight loss program among older adults.
Neuroimage. 2018 Jun;173:421-433. doi: 10.1016/j.neuroimage.2018.02.025. Epub 2018 Feb 19.
2
Parametric Dependencies of Sliding Window Correlation.
IEEE Trans Biomed Eng. 2018 Feb;65(2):254-263. doi: 10.1109/TBME.2017.2762763. Epub 2017 Oct 13.
3
The dynamic functional connectome: State-of-the-art and perspectives.
Neuroimage. 2017 Oct 15;160:41-54. doi: 10.1016/j.neuroimage.2016.12.061. Epub 2016 Dec 26.
4
Mind-wandering as spontaneous thought: a dynamic framework.
Nat Rev Neurosci. 2016 Nov;17(11):718-731. doi: 10.1038/nrn.2016.113. Epub 2016 Sep 22.
5
On the Stability of BOLD fMRI Correlations.
Cereb Cortex. 2017 Oct 1;27(10):4719-4732. doi: 10.1093/cercor/bhw265.
6
Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states.
Neuroimage. 2016 Jun;133:111-128. doi: 10.1016/j.neuroimage.2016.02.074. Epub 2016 Mar 4.
7
Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
Neuroimage. 2016 Feb 15;127:242-256. doi: 10.1016/j.neuroimage.2015.11.055. Epub 2015 Nov 26.
8
The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain.
Neuroimage. 2015 Nov 1;121:227-42. doi: 10.1016/j.neuroimage.2015.07.022. Epub 2015 Jul 11.
9
Influence of epoch length on measurement of dynamic functional connectivity in wakefulness and behavioural validation in sleep.
Neuroimage. 2015 May 15;112:169-179. doi: 10.1016/j.neuroimage.2015.02.061. Epub 2015 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验