Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Biofabrication. 2019 Feb 25;11(2):025007. doi: 10.1088/1758-5090/ab0478.
Epithelial tissues contain three-dimensional (3D) complex microtopographies that are essential for proper performance. These microstructures provide cells with the physicochemical cues needed to guide their self-organization into functional tissue structures. However, most in vitro models do not implement these 3D architectural features. The main problem is the availability of simple fabrication techniques that can reproduce the complex geometries found in native tissues on the soft polymeric materials required as cell culture substrates. In this study reaction-diffusion mediated photolithography is used to fabricate 3D microstructures with complex geometries on poly(ethylene glycol)-based hydrogels in a single step and moldless approach. By controlling fabrication parameters such as the oxygen diffusion/depletion timescales, the distance to the light source and the exposure dose, the dimensions and geometry of the microstructures can be well-defined. In addition, copolymerization of poly(ethylene glycol) with acrylic acid improves control of the dynamic reaction-diffusion processes that govern the free-radical polymerization of highly-diluted polymeric solutions. Moreover, acrylic acid allows adjusting the density of cell adhesive ligands while preserving the mechanical properties of the hydrogels. The method proposed is a simple, single-step, and cost-effective strategy for producing models of intestinal epithelium that can be easily integrated into standard cell culture platforms.
上皮组织包含三维(3D)复杂微形貌,这对于正常功能至关重要。这些微观结构为细胞提供了指导其自我组织成功能性组织结构所需的物理化学线索。然而,大多数体外模型并未实现这些 3D 结构特征。主要问题是缺乏简单的制造技术,这些技术可以在作为细胞培养底物的软聚合物材料上复制天然组织中发现的复杂几何形状。在这项研究中,使用反应扩散介导的光刻技术在聚乙二醇(PEG)基水凝胶上一步法和无模具方法制造具有复杂几何形状的 3D 微结构。通过控制制造参数,如氧气扩散/耗尽时间尺度、到光源的距离和曝光剂量,可以很好地定义微结构的尺寸和几何形状。此外,聚乙二醇与丙烯酸共聚可以更好地控制控制自由基聚合高度稀释的聚合物溶液的动态反应扩散过程。此外,丙烯酸允许调整细胞黏附配体的密度,同时保持水凝胶的机械性能。所提出的方法是一种简单、一步法和具有成本效益的策略,用于生产可轻松集成到标准细胞培养平台中的肠上皮模型。