文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于组织工程的具有可调机械性能的双光子聚合聚(2-乙基-2-恶唑啉)水凝胶 3D 微结构。

Two-Photon Polymerized Poly(2-Ethyl-2-Oxazoline) Hydrogel 3D Microstructures with Tunable Mechanical Properties for Tissue Engineering.

机构信息

Institute for Bioprocessing and Analytical Measurement Techniques e.V., Rosenhof, 37308 Heilbad Heiligenstadt, Germany.

Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.

出版信息

Molecules. 2020 Oct 31;25(21):5066. doi: 10.3390/molecules25215066.


DOI:10.3390/molecules25215066
PMID:33142860
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7663365/
Abstract

The main task of tissue engineering (TE) is to reproduce, replicate, and mimic all kinds of tissues in the human body. Nowadays, it has been proven useful in TE to mimic the natural extracellular matrix (ECM) by an artificial ECM (scaffold) based on synthetic or natural biomaterials to regenerate the physiological tissue/organ architecture and function. Hydrogels have gained interest in the TE community because of their ability to absorb water similar to physiological tissues, thus mechanically simulating the ECM. In this work, we present a novel hydrogel platform based on poly(2-ethyl-2-oxazoline)s, which can be processed to 3D microstructures via two-photon polymerization (2PP) with tunable mechanical properties using monomers and crosslinker with different degrees of polymerization (DP) for future applications in TE. The ideal parameters (laser power and writing speed) for optimal polymerization via 2PP were obtained using a specially developed evaluation method in which the obtained structures were binarized and compared to the computer-aided design (CAD) model. This evaluation was performed for each composition. We found that it was possible to tune the mechanical properties not only by application of different laser parameters but also by mixing poly(2-ethyl-2-oxazoline)s with different chain lengths and variation of the crosslink density. In addition, the swelling behavior of different fabricated hydrogels were investigated. To gain more insight into the viscoelastic behavior of different fabricated materials, stress relaxation tests via nanoindentation experiments were performed. These new hydrogels can be processed to 3D microstructures with high structural integrity using optimal laser parameter settings, opening a wide range of application properties in TE for this material platform.

摘要

组织工程(TE)的主要任务是复制、复制和模拟人体中的各种组织。如今,通过基于合成或天然生物材料的人工细胞外基质(支架)来模拟天然细胞外基质(ECM),已被证明在 TE 中是有用的,以再生生理组织/器官结构和功能。水凝胶因其能够吸收类似于生理组织的水分而在 TE 领域引起了关注,从而机械模拟 ECM。在这项工作中,我们提出了一种基于聚(2-乙基-2-恶唑啉)的新型水凝胶平台,该平台可以通过双光子聚合(2PP)加工成 3D 微结构,使用具有不同聚合度(DP)的单体和交联剂可调节机械性能,用于 TE 的未来应用。使用专门开发的评估方法获得了通过 2PP 进行最佳聚合的理想参数(激光功率和写入速度),其中获得的结构被二值化并与计算机辅助设计(CAD)模型进行比较。对每种成分都进行了这种评估。我们发现,不仅可以通过应用不同的激光参数来调节机械性能,还可以通过混合具有不同链长的聚(2-乙基-2-恶唑啉)和改变交联密度来调节机械性能。此外,还研究了不同制造的水凝胶的溶胀行为。为了更深入地了解不同制造材料的粘弹性行为,通过纳米压痕实验进行了应力松弛测试。通过使用最佳激光参数设置,这些新型水凝胶可以加工成具有高结构完整性的 3D 微结构,为该材料平台在 TE 中的广泛应用提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/fcdf4fa499ec/molecules-25-05066-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/eca6ae8b9eca/molecules-25-05066-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/e497f88efdd4/molecules-25-05066-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/52b5dc3d18fc/molecules-25-05066-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/305af4f50754/molecules-25-05066-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/93560ab9119d/molecules-25-05066-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/7976da4869ef/molecules-25-05066-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/172e1a73335c/molecules-25-05066-g0A7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/f1b99b254c8e/molecules-25-05066-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/3c9ac8e7b7a2/molecules-25-05066-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/3f8957da9199/molecules-25-05066-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/f80e75825916/molecules-25-05066-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/c1ccc76185ea/molecules-25-05066-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/fe9fa9403eea/molecules-25-05066-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/405ccb73f8dd/molecules-25-05066-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/19b11d80fa3f/molecules-25-05066-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/fcdf4fa499ec/molecules-25-05066-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/eca6ae8b9eca/molecules-25-05066-g0A1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/e497f88efdd4/molecules-25-05066-g0A2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/52b5dc3d18fc/molecules-25-05066-g0A3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/305af4f50754/molecules-25-05066-g0A4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/93560ab9119d/molecules-25-05066-g0A5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/7976da4869ef/molecules-25-05066-g0A6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/172e1a73335c/molecules-25-05066-g0A7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/f1b99b254c8e/molecules-25-05066-g0A8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/3c9ac8e7b7a2/molecules-25-05066-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/3f8957da9199/molecules-25-05066-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/f80e75825916/molecules-25-05066-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/c1ccc76185ea/molecules-25-05066-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/fe9fa9403eea/molecules-25-05066-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/405ccb73f8dd/molecules-25-05066-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/19b11d80fa3f/molecules-25-05066-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/464f/7663365/fcdf4fa499ec/molecules-25-05066-g007.jpg

相似文献

[1]
Two-Photon Polymerized Poly(2-Ethyl-2-Oxazoline) Hydrogel 3D Microstructures with Tunable Mechanical Properties for Tissue Engineering.

Molecules. 2020-10-31

[2]
From Simple to Architecturally Complex Hydrogel Scaffolds for Cell and Tissue Engineering Applications: Opportunities Presented by Two-Photon Polymerization.

Adv Healthc Mater. 2020-1

[3]
Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.

Acta Biomater. 2015-5

[4]
Hyaluronic acid based materials for scaffolding via two-photon polymerization.

Biomacromolecules. 2014-1-30

[5]
Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering.

Nanotechnology. 2013-12-11

[6]
Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.

Mater Sci Eng C Mater Biol Appl. 2014-10

[7]
Visible light photo-crosslinking of biomimetic gelatin-hyaluronic acid hydrogels for adipose tissue engineering.

J Mech Behav Biomed Mater. 2024-10

[8]
Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms.

J Biomed Opt. 2012-10

[9]
3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

Acta Biomater. 2017-3-27

[10]
Controlled Cell Alignment Using Two-Photon Direct Laser Writing-Patterned Hydrogels in 2D and 3D.

Macromol Biosci. 2021-5

引用本文的文献

[1]
Antibacterial and Cell-Adhesive Poly(2-ethyl-2-oxazoline) Hydrogels Developed for Wound Treatment: Evaluation.

Biomacromolecules. 2025-5-12

[2]
Cryogels Based on Poly(2-oxazoline)s through Development of Bi- and Trifunctional Cross-Linkers Incorporating End Groups with Adjustable Stability.

Macromolecules. 2024-3-12

[3]
Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization.

Front Bioeng Biotechnol. 2023-12-19

[4]
From Light to Structure: Photo Initiators for Radical Two-Photon Polymerization.

Chemistry. 2022-6-7

[5]
Four-Dimensional Stimuli-Responsive Hydrogels Micro-Structured via Femtosecond Laser Additive Manufacturing.

Micromachines (Basel). 2021-12-27

[6]
Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials.

Adv Healthc Mater. 2021-11

本文引用的文献

[1]
3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.

J Mech Behav Biomed Mater. 2020-4

[2]
Recent advances in biomaterials for 3D scaffolds: A review.

Bioact Mater. 2019-10-25

[3]
Biomimetic Designer Scaffolds Made of D,L-Lactide--Caprolactone Polymers by 2-Photon Polymerization.

Tissue Eng Part B Rev. 2019-5-2

[4]
Current development of biodegradable polymeric materials for biomedical applications.

Drug Des Devel Ther. 2018-9-24

[5]
Biophysics of Tumor Microenvironment and Cancer Metastasis - A Mini Review.

Comput Struct Biotechnol J. 2018-7-27

[6]
POxylation as an alternative stealth coating for biomedical applications.

Eur Polym J. 2017-3

[7]
Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells.

Biophys J. 2016-11-15

[8]
The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis.

ISRN Mol Biol. 2012-12-24

[9]
3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.

Acta Biomater. 2016-5

[10]
Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

Prog Biomater. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索