Institute for Bioprocessing and Analytical Measurement Techniques e.V., Rosenhof, 37308 Heilbad Heiligenstadt, Germany.
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
Molecules. 2020 Oct 31;25(21):5066. doi: 10.3390/molecules25215066.
The main task of tissue engineering (TE) is to reproduce, replicate, and mimic all kinds of tissues in the human body. Nowadays, it has been proven useful in TE to mimic the natural extracellular matrix (ECM) by an artificial ECM (scaffold) based on synthetic or natural biomaterials to regenerate the physiological tissue/organ architecture and function. Hydrogels have gained interest in the TE community because of their ability to absorb water similar to physiological tissues, thus mechanically simulating the ECM. In this work, we present a novel hydrogel platform based on poly(2-ethyl-2-oxazoline)s, which can be processed to 3D microstructures via two-photon polymerization (2PP) with tunable mechanical properties using monomers and crosslinker with different degrees of polymerization (DP) for future applications in TE. The ideal parameters (laser power and writing speed) for optimal polymerization via 2PP were obtained using a specially developed evaluation method in which the obtained structures were binarized and compared to the computer-aided design (CAD) model. This evaluation was performed for each composition. We found that it was possible to tune the mechanical properties not only by application of different laser parameters but also by mixing poly(2-ethyl-2-oxazoline)s with different chain lengths and variation of the crosslink density. In addition, the swelling behavior of different fabricated hydrogels were investigated. To gain more insight into the viscoelastic behavior of different fabricated materials, stress relaxation tests via nanoindentation experiments were performed. These new hydrogels can be processed to 3D microstructures with high structural integrity using optimal laser parameter settings, opening a wide range of application properties in TE for this material platform.
组织工程(TE)的主要任务是复制、复制和模拟人体中的各种组织。如今,通过基于合成或天然生物材料的人工细胞外基质(支架)来模拟天然细胞外基质(ECM),已被证明在 TE 中是有用的,以再生生理组织/器官结构和功能。水凝胶因其能够吸收类似于生理组织的水分而在 TE 领域引起了关注,从而机械模拟 ECM。在这项工作中,我们提出了一种基于聚(2-乙基-2-恶唑啉)的新型水凝胶平台,该平台可以通过双光子聚合(2PP)加工成 3D 微结构,使用具有不同聚合度(DP)的单体和交联剂可调节机械性能,用于 TE 的未来应用。使用专门开发的评估方法获得了通过 2PP 进行最佳聚合的理想参数(激光功率和写入速度),其中获得的结构被二值化并与计算机辅助设计(CAD)模型进行比较。对每种成分都进行了这种评估。我们发现,不仅可以通过应用不同的激光参数来调节机械性能,还可以通过混合具有不同链长的聚(2-乙基-2-恶唑啉)和改变交联密度来调节机械性能。此外,还研究了不同制造的水凝胶的溶胀行为。为了更深入地了解不同制造材料的粘弹性行为,通过纳米压痕实验进行了应力松弛测试。通过使用最佳激光参数设置,这些新型水凝胶可以加工成具有高结构完整性的 3D 微结构,为该材料平台在 TE 中的广泛应用提供了可能。
Biomacromolecules. 2014-1-30
Nanotechnology. 2013-12-11
Mater Sci Eng C Mater Biol Appl. 2014-10
J Mech Behav Biomed Mater. 2024-10
Acta Biomater. 2017-3-27
Biomacromolecules. 2025-5-12
Front Bioeng Biotechnol. 2023-12-19
Micromachines (Basel). 2021-12-27
Bioact Mater. 2019-10-25
Tissue Eng Part B Rev. 2019-5-2
Drug Des Devel Ther. 2018-9-24
Comput Struct Biotechnol J. 2018-7-27
Eur Polym J. 2017-3
Biophys J. 2016-11-15
ISRN Mol Biol. 2012-12-24
Prog Biomater. 2014