Paul C, Hartman G L, Marois J J, Wright D L, Walker D R
Department of Crop Sciences, University of Illinois, Urbana 61801.
USDA-ARS Soybean/Maize Germplasm, Pathology and Genetics Research Unit, and Department of Crop Sciences, University of Illinois, Urbana 61801.
Plant Dis. 2013 Oct;97(10):1379. doi: 10.1094/PDIS-02-13-0182-PDN.
During the years following the first detection of soybean rust, caused by Phakopsora pachyrhizi Syd., in the continental United States in November, 2004, soybean (Glycine max [L.] Merr.) genotypes with the Rpp1 or Rpp6 resistance genes exhibited high levels of resistance there (1,2,3). When challenged with 72 different American isolates collected between 2006 and 2009, PI 200492 (source of Rpp1) produced no sporulating lesions (2). In 2011 and 2012, however, field populations of P. pachyrhizi from Gadsden County, FL, caused higher rust severity on plants with Rpp1 or Rpp6 than in previous years. To assess aggressiveness, sporulation ratings were made using a 1 to 5 scale (no sporulation to profuse sporulation) on leaflets collected from field plants at or near the R6 (full seed) stage of development. A dissecting microscope was used to examine 3 replications of 5 leaflets each in 2009 or 2 replications of 10 leaflets each in 2012. The sporulation ratings increased on PI 200492 (from 1.1 ± 0.1 in 2009 to 4.1 ± 0.4 in 2012), PI 567102B (Rpp6; from 1.1 ± 0.1 in 2009 to 2.4 ± 0.2 in 2012), and L85-2378, a 'Williams 82' isoline carrying the Rpp1 gene (from 1.0 ± 0 in 2009 to 4.0 ± 0.3 in 2012). The mean 2009 and 2012 sporulation ratings for susceptible control Williams 82 were 5.0 ± 0 and 4.2 ± 0.1, respectively. Single-uredinium-derived isolates were purified from bulk isolates collected from field plots in 2009 (FL-Q09-1), 2011 (FL-Q11-1), and 2012 (FL-Q12-1). Greenhouse and detached leaflet assays were then used to test the virulence of these isolates under controlled conditions. Detached leaflets from 3-week-old seedlings of Williams 82, PI 200492, PI 567102B, and L85-2378 were inoculated by pipetting 15-μl drops of a 30 to 40 urediniospore μl suspension onto the abaxial side of 3 to 4 leaflets per genotype, which were then sealed in Petri plates and incubated in a growth chamber at 20 to 22°C. Plates were kept in the dark for 12 h following inoculation. For the greenhouse assay, the first trifoliolate leaves of at least 3 seedlings were each sprayed with 1.5 ml of a 40 urediniospore μl suspension and incubated 24 h at 22 to 24°C in a dark mist chamber. The plants were then maintained at 22 to 24°C and 76 to 86% relative humidity in a greenhouse with 10 h of daylight on average. Two weeks after inoculation with FL-Q11-1 or FL-Q12-1, all of the genotypes had developed TAN lesions with abundant sporulation, indicating susceptibility. On leaves inoculated with FL-Q09-1, however, no visible reaction was observed on PI 200492, and PI 567102B developed reddish-brown (RB) lesions associated with incomplete resistance. Although the lesions on Rpp1 and Rpp6 greenhouse seedlings inoculated with the FL-Q11-1 and FL-Q12-1 isolates were slightly darker than those that developed on Williams 82 plants or on detached leaflets, the profuse sporulation that is characteristic of the TAN infection type was observed. The higher virulence of the 2011 and 2012 Florida isolates on two soybean genotypes with Rpp1 and one with Rpp6 confirmed the presence of a P. pachyrhizi pathotype in north-central Florida that is more virulent against these genes than earlier populations from the southeastern United States. References: (1) S. Li. Crop Sci. 49:887, 2009. (2) Twizeyimana and Hartman. Plant Dis. 96:75, 2012. (3) Walker et al. Crop Sci. 51:678, 2011.
2004年11月在美国大陆首次检测到由大豆锈病菌(Phakopsora pachyrhizi Syd.)引起的大豆锈病之后的几年里,携带Rpp1或Rpp6抗性基因的大豆(Glycine max [L.] Merr.)基因型在那里表现出高度抗性(1,2,3)。当用2006年至2009年间收集的72种不同的美国分离株进行挑战时,PI 200492(Rpp1的来源)没有产生有孢子形成的病斑(2)。然而,在2011年和2012年,来自佛罗里达州加兹登县的大豆锈病菌田间种群对携带Rpp1或Rpp6的植株造成的锈病严重程度高于前几年。为了评估致病性,在发育的R6(全籽)阶段或接近该阶段时,从田间植株上采集小叶,使用1至5级评分标准(无孢子形成至大量孢子形成)对孢子形成进行评级。2009年使用解剖显微镜检查了每组5片小叶的3个重复,2012年检查了每组10片小叶的2个重复。PI 200492的孢子形成评级增加(从2009年的1.1±0.1增加到2012年的4.1±0.4),PI 567102B(Rpp6;从2009年的1.1±0.1增加到2012年的2.4±0.2),以及携带Rpp1基因的‘Williams 82’同基因系L85 - 2378(从2从2009年的1.0±0增加到2012年的4.0±0.3)。感病对照Williams 82在2009年和2012年的平均孢子形成评级分别为5.0±0和4.2±0.1。从2009年(FL - Q09 - 1)、2011年(FL - Q11 - 1)和2012年(FL - Q12 - 1)田间小区收集的混合分离物中纯化出单夏孢子堆衍生的分离株。然后使用温室和离体小叶试验在受控条件下测试这些分离株的毒力。通过将15 μl 30至40个夏孢子/μl的悬浮液滴加到每个基因型的3至4片小叶的背面,对3周龄的Williams 82、PI 200492、PI 567102B和L85 - 2378幼苗的离体小叶进行接种,然后将其密封在培养皿中,并在20至22°C的生长室中培养。接种后将培养皿在黑暗中放置12小时。对于温室试验,至少3株幼苗的第一片三出复叶各喷洒1.5 ml 40个夏孢子/μl的悬浮液,并在黑暗的喷雾室中于22至24°C下培养24小时。然后将植株在平均每天有10小时光照的温室中保持在22至24°C和76至86%的相对湿度下。用FL - Q11 - 1或FL - Q12 - 1接种两周后,所有基因型都出现了带有大量孢子形成的黄褐色病斑,表明感病。然而,在用FL - Q09 - 1接种的叶片上,PI 200492上未观察到可见反应,PI 567102B出现了与不完全抗性相关的红棕色(RB)病斑。尽管接种FL - Q11 - 1和FL - Q12 - 1分离株的Rpp1和Rpp6温室幼苗上的病斑比Williams 82植株或离体小叶上形成的病斑略深,但观察到了典型的黄褐色感染类型的大量孢子形成。2011年和2012年佛罗里达分离株对两种携带Rpp1的大豆基因型和一种携带Rpp6的大豆基因型具有更高的毒力,这证实了佛罗里达州中北部存在一种大豆锈病菌致病型,其对这些基因的毒力比美国东南部早期的种群更强。参考文献:(1)S. Li。作物科学。49:887,2009。(2)Twizeyimana和Hartman。植物病害。96:75,2012。(3)Walker等人。作物科学。51:678,2011。