Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2019 Feb 5;10(1):592. doi: 10.1038/s41467-019-08490-w.
Structure plays a vital role in determining materials properties. In lithium ion cathode materials, the crystal structure defines the dimensionality and connectivity of interstitial sites, thus determining lithium ion diffusion kinetics. In most conventional cathode materials that are well-ordered, the average structure as seen in diffraction dictates the lithium ion diffusion pathways. Here, we show that this is not the case in a class of recently discovered high-capacity lithium-excess rocksalts. An average structure picture is no longer satisfactory to understand the performance of such disordered materials. Cation short-range order, hidden in diffraction, is not only ubiquitous in these long-range disordered materials, but fully controls the local and macroscopic environments for lithium ion transport. Our discovery identifies a crucial property that has previously been overlooked and provides guidelines for designing and engineering cation-disordered cathode materials.
结构在决定材料性能方面起着至关重要的作用。在锂离子阴极材料中,晶体结构决定了间隙位置的维度和连接性,从而决定了锂离子扩散动力学。在大多数结构有序的传统阴极材料中,衍射中看到的平均结构决定了锂离子扩散途径。在这里,我们表明,在最近发现的一类高容量锂过剩岩盐中,情况并非如此。平均结构图像不再足以理解这种无序材料的性能。隐藏在衍射中的阳离子短程有序不仅在这些长程无序材料中普遍存在,而且完全控制了锂离子传输的局部和宏观环境。我们的发现确定了一个以前被忽视的关键性质,并为设计和工程阳离子无序阴极材料提供了指导。